• Title/Summary/Keyword: Cathode electrode

Search Result 729, Processing Time 0.023 seconds

A Study on Optimization of Manufacturing Condition for LiNi1/3Mn1/3Co1/3O2-based Cathode Electrode (LiNi1/3Mn1/3Co1/3O2계 정극활물질을 적용한 전극 제조조건 최적화 연구)

  • Kim Hyun-Soo;Kim Sung-Il;Lee Chang-Woo;Moon Seong-In;Kim Woo-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.139-144
    • /
    • 2006
  • A fabrication condition of the cathode electrode was optimized in a lithium secondary battery. The $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ powders were used as a cathode material. The $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$/Li cells were prepared with a certain formulation and their cycleability and rate-capability were evaluated. Optimum electrode composition simulated from the evaluated value was 86.3: 5.6: 8.1 in mass $\%$ of active material: binder: conducting material. Discharge capacity decreased markedly as the press ratio exceeded $30\%$ during preparation of the electrode. Discharge performance at a high current rate deteriorated abruptly as the electrode thickness was over $120{\mu}m$.

Characterization of a LSCF/GDC Cathode Composite in Solid Oxide Fuel Cells Using Impedance Spectroscopy

  • Hwang, Jin-Ha;Lee, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.793-799
    • /
    • 2005
  • A composite cathode of LSCF$(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3)\;and\;GDC\; (Gd_2O_3-doped\;CeO_2:Ce_{0.9}Gd_{0.1}O_{1.95_})$ was characterized in terms of an electrode response, using a point contact in an Yttria-Stabilized Zirconia (YSZ) electrolyte incorporated into AC two-point impedance spectroscopy. The point-contacted configuration amplifies the responses occurring near the YSZ/cathode interface through the aligned point contact on the planar LSCF/GDC electrode. The point contact interface increases the bulk resistance allowing the estimation of the point contact geometry and resolving the electrode-related responses. The resultant impedance spectra are analyzed through an equivalent circuit model constructed by resistors and constant phase elements. The bulk responses can be resolved from the electrode-related portions in terms of spreading resistance. The electrode-related polarizations are measured in terms of temperature and oxygen partial pressure. The modified impedance spectroscopy is discussed in terms of methodology and analytical aspects, toward resolving the electrode-polarization issues in solid oxide fuel cells.

Studies on Multi-step Addition of NMP in (LiNi0.80Co0.15Al0.05) (NCA) Cathode Slurry Preparation and its Rheological, Mechanical Strength and Electrochemical Properties for Li-ion Cells

  • Vasudevarao Pasala;Satyanarayana Maddukuri;V. Sethuraman;Rekha Lankipalli;Devi Gajula;Venkateswarlu Manne
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.262-271
    • /
    • 2023
  • For electrode stability and the electrochemical performance of the Li-ion cell, it is essential that the active ingredients and unique additives in the polymer binder be well dispersed with the solvent-based slurry. The efficient procedure used to create the slurry affects the rheological characteristics of the electrode slurry. When successively adding different steps of Nmethyl-2-pyrrolidone (NMP) solvent to the cathode composition, it is evenly disseminated. The electrochemical performance of the Li-ion cells and the electrodes made with slurry formed by single step and multiple steps of addition of NMP solvent are examined. To preform rheological properties of cathode electrode slurry on Ni-rich Lithium Nickel-Cobalt-Aluminum Oxide (LiNi0.80Co0.15Al0.05) (NCA). Also, we investigate different step addition of electrode formation and mechanical strength characterization like peel strength. According to the EIS study, a multi-step electrode slurry has lower internal resistance than a single-step electrode slurry, which results in better electrical characteristics and efficiency. Further, microstructure of electrodes is obtained electrochemical performance in the 18650 cylindrical cells with targeted capacity of 1.5 Ah. The slurry of electrodes prepared by single step and multiple steps of addition of NMP solvent and its effect on the fabrication of 1.5 Ah cells. A three-step solvent addition on slurry has been found to be a lower internal resistance than a single-step electrode slurry as confirmed by the EIS analysis, yielding improved electrical properties and efficiency.

동전기 정화 처리 효율 향상과 후처리 겸용 전극부(EPE) 개발

  • 김강호;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.275-278
    • /
    • 2002
  • In this study, to increase removal efficiency of traditional electrokinetic treatment and to reduce contaminant load of wastewater that discharged through cathode compartment, enhanced electrode compartments were investigated. Hydroxide precipitation near the cathode electrode that encounter during traditional electrokinetic treatment were prevented by enhanced electrokinetic remediation test with newly invented electrode compartment. And heavy metal concentration in wastewater showed 0 ppm thus, additive post-treatment cost were not needed.

  • PDF

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

Electricity generation from surface floating air cathode microbial fuel cell according to the wastewater flow-rate and the ratio of cathode surface area to anode surface area (표면부유 공기양극 미생물연료전지에서 유량 및 전극 면적비에 따른 전력생산 특성)

  • Yoo, Kyu-Seon;Song, Young-Chae;Woo, Jung-Hui;Chung, Jae-Woo;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.591-596
    • /
    • 2011
  • Surface floating air cathode microbial fuel cell (MFC) having horizontal flow was developed for the application of MFC technology. RVC (Reticulated vitreous carbon) coated with anyline was used as anode electrode and carbon cloth coated with Pt (5.0 g Pt/$m^2$, GDE LT250EW, E-TEK) was used as cathode electrode. As results of continuous operation with changing the flow rate from 4.3 mL/min to 9.5 mL/min, maximum power density of 4.5 W/$m^3$ was acquired at 5.4 mL/min, which was at 0.35 m/hr of flow velocity under anode electrode. When the ratio of cathode surface area to anode surface area($A_c/A_a$) was changed to 1.0, 0.5, and 0.25, the maximum power density of 2.7 W/$m^3$ was shown at the ratio of 1.0. As the ratio decreased from 1.0 to 0.25, the power density also decreased, which is caused by increasing the internal resistance resulted from reducing the surface area to contact with oxygen. Actually, internal resistances of the ratio of 1.0, 0.5, and 0.25 were 63.75${\Omega}$, 142.18${\Omega}$, and 206.12${\Omega}$, respectively.

A study of the hollow cathode discharge (HOLLOW CATHODE DISCHARGE의 방전 특성 연구)

  • Cho, S.M.;Seo, Y.W.;Kim, M.J.;Whang, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.139-141
    • /
    • 1989
  • The characteristics of the hollow cathode discharge were investigated. Temperature distribution of the hollow cathode was investigated and I-V curves of the hollow cathode discharge were obtained. In this paper variables are chamber pressure, Ar gas flow rate injected through the cathode tube and the gap distance between cathode and anode. The inter electrode electron temperature and density were measured by Langmuir probe.

  • PDF

Low Voltage-Driven CNT Cathode and It's Applications

  • Lee, Chun-Gyoo;Lee, Sang-Jo;Cho, Sung-Hee;Chi, Eung-Joon;Lee, Byung-Gon;Jeon, Sang-Ho;Ahn, Sang-Hyuck;Hong, Su-Bong;Choe, Deok-Hyeon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.851-854
    • /
    • 2004
  • By approaching the counter electrode to the CNT emitter, remarkable reduction of the cathode operating voltage has been accomplished in the under-gate CNT cathode structure. The peak emission current density of 2.5 ms/$cm^2$, which is sufficient for high brightness CNT field emission display, was obtained at the cathode-to-gate voltage of 57 V when the CNT-to-counter electrode gap was 2.2 ${\mu}m$. The gate current was less than 10 % of the anode current. The CNT cathode with low driving voltage can help the cost-effective field emission display implemented.

  • PDF

Simulation of a Novel Lateral Trench Electrode IGBT with Improved Latch-up and Forward Blocking Characteristics

  • Kang, Ey-Goo;Moon, Seung-Hyun;Kim, Sangsig;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • A new small sized Lateral Trench electrode Insulated Gate Bipolar Transistor(LTEIGBT) was proposed to improve the characteristics of conventional Lateral IGBT (LIGBT) and Lateral Trench gate IGBT (LTIGBT). The entire electrode of LTEIGBT was replace with trench-type electrode. The LTEIGBT was designed so that the width of device was no more than 19 ㎛. The Latch-up current densities of LIGBT, LTIGBT and the proposed LTEIGBT were 120A/㎠, 540A/㎠, and 1230A/㎠, respectively. The enhanced latch-up capability of the LTEIGBT was obtained through holes in the current directly reaching the cathode via the p+ cathode layer underneath n+ cathode layer. The forward blocking voltage of the LTEIGBT is 130V. Conventional LIGBT and LTIGBT of the same size were no more than 60V and 100V, respectively. Because the the proposed device was constructed of trench-type electrodes, the electric field moved toward trench-oxide layer, and punch through breakdown of LTEIGBT is occurred, lately.

  • PDF

Electrochemical Behavior Depending on Designed-Anode and Cathodes of Hybrid Supercapacitors (하이브리드 슈퍼커패시터의 음극 및 양극 설계에 따른 전기화학적 거동)

  • Shin, Seung-Il;Lee, Byung-Gwan;Ha, Min-Woo;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.774-780
    • /
    • 2019
  • The performance of Li-ion hybrid supercapacitors (asymmetric-type) depends on many factors such as the capacity ratio, material properties, cell designs and operating conditions. Among these, in consideration of balanced electrochemical reactions, the capacity ratio of the negative (anode) to positive (cathode) electrode is one of the most important factors to design the Li-ion hybrid supercapacitors for high energy storing performance. We assemble Li-ion hybrid supercapacitors using activated carbon (AC) as anode material, lithium manganese oxide as cathode material, and organic electrolyte (1 mol L-1 LiPF6 in acetonitrile). At this point, the thickness of the anode electrode is controlled at 160, 200, and 240 ㎛. Also, thickness of cathode electrode is fixed at 60 ㎛. Then, the effect of negative and positive electrode ratio on the electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors is investigated, especially in the terms of capacity and cyclability at high current density. In this study, we demonstrate the relationship of capacity ratio between anode and cathode electrode, and the excellent electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors. The remarkable capability of these materials proves that manipulation of the capacity ratio is a promising technology for high-performance Li-ion hybrid supercapacitors.