• Title/Summary/Keyword: Cathode Power

Search Result 544, Processing Time 0.03 seconds

Learning Data Model Definition and Machine Learning Analysis for Data-Based Li-Ion Battery Performance Prediction (데이터 기반 리튬 이온 배터리 성능 예측을 위한 학습 데이터 모델 정의 및 기계학습 분석 )

  • Byoungwook Kim;Ji Su Park;Hong-Jun Jang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.133-140
    • /
    • 2023
  • The performance of lithium ion batteries depends on the usage environment and the combination ratio of cathode materials. In order to develop a high-performance lithium-ion battery, it is necessary to manufacture the battery and measure its performance while varying the cathode material ratio. However, it takes a lot of time and money to directly develop batteries and measure their performance for all combinations of variables. Therefore, research to predict the performance of a battery using an artificial intelligence model has been actively conducted. However, since measurement experiments were conducted with the same battery in the existing published battery data, the cathode material combination ratio was fixed and was not included as a data attribute. In this paper, we define a training data model required to develop an artificial intelligence model that can predict battery performance according to the combination ratio of cathode materials. We analyzed the factors that can affect the performance of lithium-ion batteries and defined the mass of each cathode material and battery usage environment (cycle, current, temperature, time) as input data and the battery power and capacity as target data. In the battery data in different experimental environments, each battery data maintained a unique pattern, and the battery classification model showed that each battery was classified with an error of about 2%.

Driver Design with Linear Feedback Function for the Optimum Power Consumption of LED BLU (LED BLU의 최적 소비전력을 위한 선형적 피드백 제어기능을 가지는 드라이버 설계)

  • Lee, Seung-Woo;Yu, Nam-Hee;Cho, Seong-Ik;Shin, Hong-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1513-1517
    • /
    • 2012
  • As demands for green industry increase, this paper proposes a power control technique that can substitute pre -existing CCFL(Cold Cathode Fluorescent Lamp) and optimize power consumption of LED BLU. This technique is designing LED driver circuit that make a DC-DC output voltage(VLED) to have a linear control function for a supply voltage of LED string. The proposed LED driver have an advantage that can increase or decrease a DC-DC output voltage compared with conventional LED driver. The designed LED driver circuit was designed using 0.35um CMOS technology. And its operation was verified through simulation.

Hybrid Capacitors Using Organic Electrolytes

  • Morimoto, T.;Che, Y.;Tsushima, M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.174-177
    • /
    • 2003
  • Electric double-layer capacitors based on charge storage at the interface between a high surface area activated carbon electrode and an electrolyte solution are characterized by their long cycle-life and high power density in comparison with batteries. However, energy density of electric double-layer capacitors obtained at present is about 6 Wh/kg at a power density of 500W/kg which is smaller as compared with that of batteries and limits the wide spread use of the capacitors. Therefore, a new capacitor that shows larger energy density than that of electric double-layer capacitors is proposed. The new capacitor is the hybrid capacitor consisting of activated carbon cathode, carbonaceous anode and an organic electrolyte. Maximum voltage applicable to the cell is over 4.2V that is larger than that of the electric double-layer capacitor. As a result, discharged energy density on the basis of stacked volume of electrode, current collector and separator is more than 18Wh/l at a power density of 500W/l.

The Change of Composition and the Throwing Power of Pb-Sn Alloy Electrodeposits in Pulse Plating (파형전류전해에 의한 Pb-Sn합금의 조성변화 및 균일전착력)

  • 예길촌;김용웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.4
    • /
    • pp.197-206
    • /
    • 1989
  • The Composition and throwing power-of Pb-Sn alloy deposits are investigated in tems of the pulse parameters in pulse plating. Microhardness and intermal srress of alloy deposots are measured. The current efficiency of pulse plating is lower than that of D.C.plating while cathode overpotential and macro-throwing power noticebly increase with increasing peak current density. The Pb content of P.C. plated alloy deposits with increasing average current density, is relatively lower than of D.C. plated deposits at the same average current density. The internal stress of Pb-Sn alloy is not detected and the microhardness are 9.0kg/mm2 and 11kg/mm2 for D.C. plated P.C. plated deposits, respectively.

  • PDF

The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization (전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성)

  • Lee, Byung-Gwan;Maeng, Ju-Cheul;Lee, Joung-Kyu;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.

A Study on the Electrical Characteristics of Battery Capacitor Applied to Photovoltaic Power System (태양광 시스템에 적용한 배터리 커패시터의 전기적 특성에 관한 연구)

  • Mang, Ju-Cheul;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1740-1744
    • /
    • 2017
  • This paper describes the preparation and characteristics of a battery capacitor and module for solar power system. A cylindrical 30,000F battery capacitor ($60{\times}138mm$) was assembled by using the $LTO(Li_4Ti_5O_{12})$ electrode as an anode and $NMC(LiNiMnCoO_2)-LCO(LiCoO_2)$ as a cathode. The battery capacitor has reduced energy density and power density under high CC(constant current) and CP(constant power) conditions. Battery capacitor module (16V, 11Ah) was fabricated using an asymmetric hybrid capacitor with a capacitance of 30,000F. In order to determine the characteristics of the battery capacitor Module for solar power system, battery capacitor cells were connected in series with active balancing circuit. As a result of measuring the 100w LED lamp, it was discharged at the voltage of 15V~10V, and the compensation time at discharge was measured to be about 4979s. Experimental results show that it can be applied to applications related to solar power system by applying battery capacitor module.

Carbon-Nanotube FED;Japanese National Project

  • Soichiro, Okuda
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.855-859
    • /
    • 2004
  • The Japanese National Project "Carbon Nanotube FED" is developing a high image-quality and low power-consumption field emission display (FED) by applying carbon nanotube (CNT) to the electron source. A uniform electron source with a flat-film CNTs and fine structure triodes Fir suppressing the deviation of emission is required. For realizing an FED panel, it is also necessary to develop the glass-bulb technologies for vacuum sealing, and display technologies for driving the panel by circuit electronic and for evaluating the picture quality by measuring. By achieving these technologies, an FED compatible with conventional Cathode Ray Tubes (CRTs) will be realized.

  • PDF

Carbon nanotubes for Field Emission Displays.

  • Milne, W.I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.919-922
    • /
    • 2004
  • The Field Emission Display is potentially an excellent display with high brightness and low power consumption with wide viewing angle but more work is still needed in order to identify the ideal electron emitter for such displays. This paper will review the work that we have carried out in Cambridge aver the past couple of years on optimisation of Carbon nanotubes for use as the cold cathode emitters that are possible candidates as the electron sources in second generation FEDs.

  • PDF

Low-cost asymmetric control half-bridge inverter for LCD backlight (LCD 백라이트용 저가의 비태칭 제어 하프브리지 인버터)

  • 최성진
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.509-512
    • /
    • 2000
  • LCD displays for flat monitors the backlit using Cold Cathode Flourescent Lamps(CCFLs) In this paper a low-cost series resonant half-bridge inverter for LCD backlight is proposed as a CCFL ballast. It is regulated by asymmetric control for its fixed frequency soft switching model. The attractiveness of this topology is primarily its low cost because of using BJT switches and reduction of anti-parallel diode. Design procedure and experimental verification from 5W 15"LCD backlight are presented.

  • PDF

Properties of Carbon Films Formed for Renewed Electric Power Energy by Electro-deposition (신 재생 에너지 활용을 위한 Carbon 박막의 특성)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.147-150
    • /
    • 2007
  • Electro-deposition of carbon film on silicon substrate in methanol solution was carried out with various current density, solution temperature and electrode spacing between anode and cathode. The carbon films with smooth surface morphology and high electrical resistance were formed when the distance between electrode was relatively wider. The electrical resistance of the carbon films were independent of both current density and solution temperature.