• 제목/요약/키워드: Cathode Power

검색결과 544건 처리시간 0.022초

Removal of Flooding in a PEM Fuel Cell at Cathode by Flexural Wave

  • Byun, Sun-Joon;Kwak, Dong-Kurl
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.104-114
    • /
    • 2019
  • Energy is an essential driving force for modern society. In particular, electricity has become the standard source of power for almost every aspect of life. Electric power runs lights, televisions, cell phones, laptops, etc. However, it has become apparent that the current methods of producing this most valuable commodity combustion of fossil fuels are of limited supply and has become detrimental for the Earth's environment. It is also self-evident, given the fact that these resources are non-renewable, that these sources of energy will eventually run out. One of the most promising alternatives to the burning of fossil fuel in the production of electric power is the proton exchange membrane (PEM) fuel cell. The PEM fuel cell is environmentally friendly and achieves much higher efficiencies than a combustion engine. Water management is an important issue of PEM fuel cell operation. Water is the product of the electrochemical reactions inside fuel cell. If liquid water accumulation becomes excessive in a fuel cell, water columns will clog the gas flow channel. This condition is referred to as flooding. A number of researchers have examined the water removal methods in order to improve the performance. In this paper, a new water removal method that investigates the use of vibro-acoustic methods is presented. Piezo-actuators are devices to generate the flexural wave and are attached at end of a cathode bipolar plate. The "flexural wave" is used to impart energy to resting droplets and thus cause movement of the droplets in the direction of the traveling wave.

리튬이차전지용 양극재 개발 동향 (The Research and Development Trend of Cathode Materials in Lithium Ion Battery)

  • 박홍규
    • 전기화학회지
    • /
    • 제11권3호
    • /
    • pp.197-210
    • /
    • 2008
  • 리튬이차전지용 양극재는 전지 성능발전과 더불어 다양하게 발전되어 왔다. 처음으로 채용된 $LiCoO_2$는 초기의 부족한 성능을 도핑이나 표면개질이라는 기술을 채용하여 지속적인 발전을 거듭하면서 최근 4.3V에 가까운 충전전압에서도 적용 가능하게 되었다. 한편으로 응용기기가 복잡해지면서 요구되는 특성도 한층 강화되었다. 높은 작동전압 뿐만 아니라 고용량이 요구되면서 새로운 재료에 대한 연구개발이 시작되었고, 그 중에서도 ${LiNi}_{1-x}{M_xO_2}$, $Li[Ni_{x}Mn_{y}Co_{z}]O_{2}$, $Li[{Ni}_{1/2}{Mn}_{1/2}]O_{2}$등 다양한 재료들이 개발되기에 이르렀다. 최근에는 고유가에 따라 전기자동차용 개발이활발해지면서 고안전성의 새로운 재료가 필요하게 되었고, 이러한 요구에 수렴하여 ${LiMn_2}{O_4}$, $LiFePO_4$와 같은 안전성이 매우 우수한 재료가 개발되었다. 향 후 양극재 부분은 이외에도 다양한 상들이 고용량과 동시에 안전성이 뛰어난 고용체를 이루고 있는 복합체 양극재를 비롯하여 다양한 재료들이 개발될 것으로 여겨진다.

PEM 연료전지 공기극 유로에서 물의 거동에 대한 CFD 해석과 가시화 실험의 비교 연구 (A Comparison Study of CFD Analysis and Flow Visualization on Behavior of Liquid Water in Cathode Channels of PEM Fuel Cells)

  • 김현일;남진현;신동훈;정태용;김영규;서원석;이정운
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2008년도 춘계학술 발표회
    • /
    • pp.101-108
    • /
    • 2008
  • Polymer electrolyte membrane (PEM) fuel cells are promising power generation devices which are ideal for residential and automobile applications, thanks to their fast transient characteristics. However, liquid water produced in PEM fuel cells should be properly managed to enhance the performances and durabilities of the cells. In this study, a visualization experiment was conducted to investigate the flow behavior of water droplets in cathode channels. The visualization experiment was done with four different model flow channels which were made by varying the material (Acrylic and Teflon) and the channel width (1 mm and 2 mm). Acrylic is hydrophilic (contact angle is about $80^{\circ}$) while Teflon is hydrophobic (contact angle is about $120^{\circ}$). A computational fluid dynamics (CFD) analysis was also performed to compare the observed and the simulated two-phase water/air flow characteristics in cathode channels. The computational models were made to be consistent with the geometries and surface properties of the model flow channels. Both the experimental and numerical results showed that the Teflon cathode channel with 1 mm width has the best water management performance among four model flow channels considered. A close correlation was found between the experimental visualization results and the numerical CFD simulation results.

  • PDF

용융탄산염 연료전지의 분극현상 연구 (A Study on Polarization of the Molten Carvonate Fuel Cell)

  • 남석우;서상혁;임태훈;오인환;홍성안;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제3권2호
    • /
    • pp.55-62
    • /
    • 1992
  • 본 연구에서는 용융탄산염 연료전지의 각 구성요소에서 발생하는 분극현상을 조사하였다. 기준 전극을 부착한 단위전지를 제작하고 전류단락법을 이용하여 전지의 내부저항에 의한 전압손실 및 그이외의 과전압을 측정하였다. $150mA/cm^2$의 전류밀도에서 anode의 과전압은 60mV이하였으나 cathode의 과전압은 130mV 정도로 크게 나타났으며, 전지의 내부저항에 의한 과전압도 170mV정도로커서 cathode의 성능 개선 빛 내부저항의 감소가 필요함을 알았다. 박막 모델을 사용하여 전극의 과전압을 실험치와 근접하게 예측할 수 있었으며, 전극 전해질 계면의 면적 및 전해질 박막의 두께를 조절하여 과전압이 최소가 되도록 전극의 구조를 조절하는 것이 매우 중요함을 알 수 있었다.

  • PDF

혼합전도체 LSCF(La0.6Sr0.4Co0.2Fe0.8O3) 양극의 기공률에 따른 음극지지형 단전지의 출력특성 평가 (Effect of Cathode Porosity of Mixed Conducting (La0.6Sr0.4Co0.2Fe0.8O3) on the Power Generating Characteristics of Anode Supported SOFCs)

  • 윤중철;김우식;김형철;이종호;김주선;이해원;김병호
    • 한국세라믹학회지
    • /
    • 제42권4호
    • /
    • pp.269-275
    • /
    • 2005
  • 단전지의 성능을 혼합전도체인 LSCF 양극의 미세구조, 특히 전극반응에 필요한 표면적의 양과 연관되는 앙극의 기공률의 변화에 따라 평가하였다. 기공률이 서로 다른 양극을 제조하기 위해 미세한 양극분말과 조대한 양극분말의 혼합비를 달리하여 양극을 제조한 결과 양극의 기공률을 각각 14, 23, 27, $39\%$로 얻을 수 있었다. 양극 기공률이 서로 다른 4종류의 단전지에 대한 직류 전류차단법과 교류임피던스법을 이용한 전기화학적 평가 결과 전극에서의 분극은 양극의 기공률이 증가할수록 감소하는 결과를 얻었다. 이러한 분극특성은 양극의 기공률이 증가하며 전극반응에 필요한 활성면적이 증가했기 때문으로 추론되며 이러한 이유로 단전지의 성능 또한 양극의 기공률이 증가하면서 향상되는 것으로 나타났다.

Boosting Power Generation by Sediment Microbial Fuel Cell in Oil-Contaminated Sediment Amended with Gasoline/Kerosene

  • Aleman-Gama, Elizabeth;Cornejo-Martell, Alan J.;Kamaraj, Sathish Kumar;Juarez, Katy;Silva-Martinez, Susana;Alvarez-Gallegos, Alberto
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.308-320
    • /
    • 2022
  • The high internal resistance (Rint) that develops across the sediment microbial fuel cells (SMFC) limits their power production (~4/10 mW m-2) that can be recovered from an initial oil-contaminated sediment (OCS). In the anolyte, Rint is related to poor biodegradation activity, quality and quantity of contaminant content in the sediment and anode material. While on the catholyte, Rint depends on the properties of the catholyte, the oxygen reduction reaction (ORR), and the cathode material. In this work, the main factors limiting the power output of the SMFC have been minimized. The power output of the SMFC was increased (47 times from its initial value, ~4 mW m-2) minimizing the SMFC Rint (28 times from its initial value, 5000 ohms), following the main modifications. Anolyte: the initial OCS was amended with several amounts of gasoline and kerosene. The best anaerobic microbial activity of indigenous populations was better adapted (without more culture media) to 3 g of kerosene. Catholyte: ORR was catalyzed in birnessite/carbon fabric (CF)-cathode at pH 2, 0.8M Na2SO4. At the class level, the main microbial groups (Gammaproteobacteria, Coriobacteriia, Actinobacteria, Alphaproteobacteria) with electroactive members were found at C-anode and were associated with the high-power densities obtained. Gasoline is more difficult to biodegrade than kerosene. However, in both cases, SMFC biodegradation activity and power output are increased when ORR is performed on birnessite/CF in 0.8 M Na2SO4 at pH 2. The work discussed here can focus on bioremediation (in heavy OCS) or energy production in future work.

Display power analysis and design guidelines to reduce power consumption

  • Issa, Joseph
    • Journal of Information Display
    • /
    • 제13권4호
    • /
    • pp.167-177
    • /
    • 2012
  • Cold cathode fluorescent lamps (CCFLs) are used to provide lighting for liquid crystal displays (LCDs). This paper presents a set of guidelines for measurement characterization and design to reduce the power consumption of CCFL LCD backlight inverters and panel electronics. The proposed methods aim to reduce the backlight power consumption by fine-tuning a back-light inverter for a specific LCD, using several methods. First, the authors describe their power measurement methodology; and next, they identify different areas for tuning a backlight inverter for a given display. The experiment results showed that power savings can range from 50 to 200mW if the backlight inverter is properly tuned. This paper also proposes an optimized configuration for light-emitting device (LED) panels to reduce power loss by selecting a LED with a specific input voltage and number of cells to help minimize power loss.

용융탄산염 연료전지 스택 온도 조절을 위한 분리판에 관한 수치 해석 연구 (Numerical Studies of a Separator for Stack Temperature Control in a Molten Carbonate Fuel Cell)

  • 김도형;김범주;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.305-312
    • /
    • 2011
  • The use of a separator to control stack temperature in a molten carbonate fuel cell was studied by numerical simulation using a computational fluid dynamics code. The stack model assumed steady-state and constant-load operation of a co-flow stack with an external reformer at atmospheric pressure. Representing a conventional cell type, separators with two flow paths, one each for the anode and cathode gas, were simulated under conditions in which the cathode gas was composed of either air and carbon dioxide (case I) or oxygen and carbon dioxide (case II). The results showed that the average cell potential in case II was higher than that in case I due to the higher partial pressures of oxygen and carbon dioxide in the cathode gas. This result indicates that the amount of heat released during the electrochemical reactions was less for case II than for case I under the same load. However, simulated results showed that the maximum stack temperature in case I was lower than that in case II due to a reduction in the total flow rate of the cathode gas. To control the stack temperature and retain a high cell potential, we proposed the use of a separator with three flow paths (case III); two flow paths for the electrodes and a path in the center of the separator for the flow of nitrogen for cooling. The simulated results for case III showed that the average cell potential was similar to that in case II, indicating that the amount of heat released in the stack was similar to that in case II, and that the maximum stack temperature was the lowest of the three cases due to the nitrogen gas flow in the center of the separator. In summary, the simulated results showed that the use of a separator with three flow paths enabled temperature control in a co-flow stack with an external reformer at atmospheric pressure.

금속지지체형 고체산화물 연료전지의 단전지 특성 및 전산해석 (Single cell property and numerical analysis of metal-supported solid oxide fuel cell)

  • 이창보;배중면
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2222-2227
    • /
    • 2007
  • Newly structured metal-supported solid oxide fuel cell was fabricated and characterized by impedance analysis and galvanodynamic experiment. Using a cermet adhesive, thin ceramic layer composed of anode(Ni/YSZ) and electrolyte(YSZ) was joined with STS430 metal support of which flow channel was fabricated. $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ perovskite oxide was used as cathode material. Single cell performance was increased and saturated at operating time to 300hours at 800$^{\circ}C$ because of cathode sintering effect. The sintering effect was reinvestigated by half cell test and exchange current density was measured as 0.005A/$cm^2$. Maximum power density of the cell was 0.09W/$cm^2$ at 800$^{\circ}C$. Numerical analysis was carried out to classify main factors influencing the single cell performances. Compared to experimental IV curve, simulated curve based on experimental parameters such as exchange current density was in good agreement.

  • PDF

열전지용(MS2, M=Fe, Ni, Co)계 양극의 전기화학적 특성 연구 (Effect of Cathode Materials (MS2, M=Fe, Ni, Co) on Electrochemical Properties of Thermal Batteries)

  • 이정민;임채남;윤현기;정해원
    • 한국전기전자재료학회논문지
    • /
    • 제30권9호
    • /
    • pp.583-588
    • /
    • 2017
  • Thermal batteries are used in military power sources that require robustness and long storage life for applications in missiles and torpedoes. $FeS_2$ powder is currently used as a cathode material because of its high specific energy density, environmental non-toxicity, and low cost. $MS_2$ (M = Fe, Ni, Co) cathodes have been explored as novel candidates for thermal batteries in many studies; however, the discharge characteristics (1, 2, 3 plateau) of single cells in thermal batteries with different cathodes have not been elucidated in detail. In this study, we independently analyzed the discharge voltage and calculated the total polarizations of single cells using $MS_2$ cathodes. Based on the results of this study, we propose $NiS_2$ as a potential cathode material for use in thermal batteries.