• Title/Summary/Keyword: Cathode Layer

Search Result 498, Processing Time 0.023 seconds

Fabrication and Cell Properties of Flattened Tube Segmented-in-Series Solid Oxide Fuel Cell-Stack Using Decalcomania Paper (전사지를 이용한 다전지식 평관형 고체산화물 연료전지 제작 및 셀 특성)

  • An, Yong-Tae;Ji, Mi-Jung;Park, Sun-Min;Shin, Sang-Ho;Hwang, Hae-Jin;Choi, Byung-Hyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.206-210
    • /
    • 2013
  • In the segmented-in-series solid-oxide fuel cells (SIS-SOFCs), fabrication techniques which use decalcomania paper have many advantages, i.e., an increased active area of the electrode; better interfacial adhesion property between the anode, electrolyte and cathode; and improved layer thickness uniformity. In this work, a cell-stack was fabricated on porous ceramic flattened tube supports using decalcomania paper, which consists of an anode, electrolyte, and a cathode. The anode layer was $40{\mu}m$ thick, and was porous. The electrolyte layers exhibited a uniform thickness of about $20{\mu}m$ with a dense structure. Interfacial adhesion was improved due to the dense structure. The cathode layers was $30{\mu}m$ thick with porous structure, good adhesion to the electrolyte. The ohmic resistance levels at 800, 750 and $700^{\circ}C$ were measured, showing values of 1.49, 1.58 and $1.65{\Omega}{\cdot}cm^2$, respectively. The polarization resistances at 800, 750 and $700^{\circ}C$ were measured to be 1.63, 2.61 and $4.17cm^2$, respectively. These lower resistance values originated from the excellent interfacial adhesion between the anode, electrolyte and cathode. In a two-cell-stack SOFC, open-circuit voltages(OCVs) of 1.915, 1.942 and 1.957 V and maximum power densities(MPD) of 289.9, 276.1 and $220.4mW/cm^2$ were measured at 800, 750 and $700^{\circ}C$, respectively. The proposed fabrication technique using decalcomania paper was shown to be feasible for the easy fabrication of segmented-in-series flattened tube SOFCs.

One-Step β-Li2SnO3 Coating on High-nickel Layered Oxides via Thermal Phase Segregation for Li-ion Batteries

  • Seongmin Kim;Hanseul Kim;Sung Wook Doo;Hee-Jae Jeon;In Hye Kim;Hyun-seung Kim;Youngjin Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.293-300
    • /
    • 2023
  • The global energy storage markets have gravitated to high-energy-density and low cost of lithium-ion batteries (LIBs) as the predominant system for energy storage such as electric vehicles (EVs). High-Ni layered oxides are considered promising next-generation cathode materials for LIBs owing to their significant advantages in terms of high energy density. However, the practical application of high-Ni cathodes remains challenging, because of their structural and surface instability. Although extensive studies have been conducted to mitigate these inherent instabilities, a two-step process involving the synthesis of the cathode and a dry/wet coating is essential. This study evaluates a one-step β-Li2SnO3 layer coating on the surface of LiNi0.8Co0.2O2 (NC82) via the thermal segregation of Sn owing to the solubility limit with respect to the synthesis temperature. The doping, segregation, and phase transition of Sn were systematically revealed by structural analyses. Moreover, surface-engineered 5 mol% Sn-coated LiNi0.8Co0.2O2 (NC82_Sn5%) exhibited superior capacity retention compared to bare NC82 owing to the stable surface coating layer. Thus, the developed one-step coating method is suitable for improving the properties of high-Ni layered oxide cathode materials for application in LIBs.

Qualitative Analysis of Patents Concerning Cathode Active Materials for Lithium-Ion Secondary Batteries Based on Layer Structure (층상구조기반의 리튬이차전지용 양극 활물질에 관한 특허정성분석)

  • Kim, Byung-Nam;Lim, Yong-Hwan;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.294-305
    • /
    • 2015
  • We have quantitatively analyzed 1,294 effective patents on "Quantitative Analysis of Patents Concerning Cathode Active Materials for Lithium-Ion Secondary Batteries Based on Layer Structure" from Korea, USA, Japan, Europe and PCT (WO). The importance of technological and patent values of the aforesaid patents were evaluated by the factors shown in Table 1, and 104 major and 20 core patents were selected in compliance with the evaluation from the patents. The technological flow chart over time regarding the selected major and core patents was prepared, and the applying time and development process of patents, as well as the position of core patents were established on the time scale investigated. Finally, the differentiation plans and patent avoidance strategies for the next technology development, in comparison with the technologies of patents already applied and registered, were suggested.

Effect of current density, temperature and electrolyte concentration on Composition of Zn-Ni Electrodeposits (Zn-Ni도금의 합금화에 미치는 전류밀도, 온도와 전해액농도의 영향)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.307-312
    • /
    • 2017
  • In the industry, galvanizing using the principle of sacrificial anode is used Zn-Ni alloy plating was developed as one of the measures to increase the corrosion resistance rather than pure zinc plating. The alloy plating layer has a corrosion resistance of 4-5 times that of the pure zinc plating layer, so that it is applied to automotive parts requiring high corrosion resistance even though the plating cost is high. The amount of Zn-Ni alloy plating solution is a sulfuric acid bath, a chlorinated bath, an alkali bath, and an ammonia bath. Here, the influence of the electrolytic conditions on the composition of the alloy plating in the chloride bath was investigated. The results are explained by the cathode overvoltage and the diffusion coefficient. In general, as the overvoltage of the cathode increases, the concentration polarization becomes more important than the activation polarization. The concentration polarization is determined by element diffusion in the diffusion layer. That is, as the overvoltage of the cathode increases, the Zn content having a large diffusion coefficient increases.

Study on metal-supported solid oxide fuel cells (신구조 금속지지체형 고체산화물 연료전지)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.129-132
    • /
    • 2007
  • Advanced structure of metal-supported solid oxide fuel cells was devised to overcome sealing problem and mechanical instability in ceramic-supported solid oxide fuel cells. STS430 whose dimensions were 26mm diameter, 1mm thickness and 0.4mm channel width was used as metal support. Thin ceramic layer composed of anode(Ni/YSZ) and electrolyte(YSZ) was joined with STS430 metal support by using a cermet adhesive. $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_{3}$ perovskite oxide was used as cathode material. It was noted that oxygen reduction reaction of cathode governed the overall cell performance from oxygen partial pressure dependance.

  • PDF

Characteristic of transparent OLED using transparent metal cathode with green phosphorescent dopant (투명 금속 음극을 이용한 녹색 인광 OLED의 특성)

  • Yoon, Do-Yeol;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.154-154
    • /
    • 2010
  • We have developed transparent OLED with green phosphorescent doped layer using transparent metal cathode deposited by thermal evaporation technique. Phosphorescent guest molecule, $Ir(ppy)_3$, was doped in host mCP for the green phosphorescent emission. Ca/Ag double layers were used as a cathode material of transparent OLED. The turn-on voltage of OLED was 5.2 V. The highest efficiency of the device reachs to 31 cd/A at 2 mA/$cm^2$.

  • PDF

The Effect of Surface Modification with La-M-O (M = Ni, Li) on Electrochemical Performances of Li[Ni0.8Co0.15Al0.05]O2 Cathode

  • Ryu, Jea-Hyeok;Kim, Seuk-Buom;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.657-660
    • /
    • 2009
  • The surface of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode particle was modified by lanthanum based oxide to improve electrochemical property and thermal stability. The XRD pattern of surface layer was indexed with that of $La_4NiLiO_8$. The discharge capacity of modified electrode was higher than that of pristine sample, specially at fast charge-discharge rate and high cut-off voltage. In the DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by surface modification. Such enhancement may by attributed to the presence of stable lanthanum based oxide, which effectively suppressd the reaction between electrode and electrolyte on the surface of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ electrode.

New Photocatalytic Systems for Air Purification (신 개념의 광촉매 응용 공기정화시스템)

  • Ha, Jin-Wook;Kim, Hak-Soo;Han, Chul-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.347-349
    • /
    • 2003
  • Photoelectrocatalytic system is based on the idea that the photogenerated electrons in a layer of TiO$_2$ would move toward a cathode with application of high voltage across the TiO$_2$ coated aluminum plate. In this system, aluminum plate is used as a substrate for TiO$_2$ and also serves as a cathode. According to our scheme, moving photogenerated electrons toward a cathode would have the same effect as moving these electrons away from the holes, which would have the effect of retarding recombination of photogenerated electrons with holes. Recent experiments on benzene and toluene showed higher rates of removal with high voltage on compared to high voltage off, which supported our scheme partially.

  • PDF

A Study on the Bypass Flow Penetrating Through a Gas Diffusion Layer in a PEM Fuel Cell with Serpentine Flow Channels (사행유로를 갖는 고분자연료전지내부에서 가스확산층을 통과하는 반응가스 우회유동에 대한 연구)

  • Cho, Choong-Won;Ahn, Eun-Jin;Lee, Seung-Bo;Yoon, Young-Gi;Lee, Won-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.288-297
    • /
    • 2009
  • A serpentine channel geometry often used in a fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from the intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with high aspect ratio of active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compressive forces. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds that of dropwise condensation in cathode channels.

Analyzing the Effects of MEA Designs on Cold Start Behaviors of Automotive Polymer Electrolyte Fuel Cell Stacks (자동차용 고분자전해질형연료전지 스택에서의 막-전극접합체 설계인자가 저온시동에 미치는 영향성 연구)

  • Gwak, Geon-Hui;Ko, Jo-Han;Ju, Hyun-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.8-18
    • /
    • 2012
  • This paper presents a three-dimensional, transient cold-start polymer electrolyte fuel cell (PEFC) model to numerically evaluate the effects of membrane electrode assembly (MEA) design and cell location in a PEFC stack on PEFC cold start behaviors. The cold-start simulations show that the end cell experiences significant heat loss to the sub-freezing ambient and thus finally cold-start failure due to considerable ice filling in the cathode catalyst layer. On the other hand, the middle cells in the stack successfully start from $-30^{\circ}C$ sub-freezing temperature due to rapid cell temperature rise owing to the efficient use of waste heat generated during the cold-start. In addition, the simulation results clearly indicate that the cathode catalyst layer (CL) composition and thickness have an substantial influence on PEFC cold-start behaviors while membrane thickness has limited effect mainly due to inefficient water absorption and transport capability at subzero temperatures.