• Title/Summary/Keyword: Cathode$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$

Search Result 57, Processing Time 0.026 seconds

Synthesis and electrochemical properties of layered $Li[Ni_xCo_{1-2x}Mn_x]O_2$ materials for lithium secondary batteries prepared by mechanical alloying (기계적 합금법을 이용한 리튬 2차 전지용 층상 양극물질 $Li[Ni_xCo_{1-2x}Mn_x]O_2$ 의 합성 및 전기화학적 특성에 관한 연구)

  • 박상호;신선식;선양국
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.16-16
    • /
    • 2002
  • The presently commercialized lithium-ion batteries use layer structured LiCoO₂ cathodes. Because of the high cost and toxicity of cobalt, an intensive search for new cathode materials has been underway in recent years. Recently, a concept of a one-to-one solid state mixture of LiNO₂ and LiMnO₂, i.e., Li[Ni/sub 0.5/Mn/sub 0.5/]O₂, was adopted by Ohzuku and Makimura to overcome the disadvantage of LiNiO₂ and LiMnO₂. Li[Ni/sub 0.5/Mn/sub 0.5/]O₂ has the -NaFeO₂ structure, which is characteristic of the layered LiCoO₂ and LiNiO₂ structures and shows excellent cycleability with no indication of spinel formation during electrochemical cycling. Layered Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials with high homogeneity and crystallinity were synthesized using a mechanical alloying method. The Li[Ni/sub 0.475/Co/sub 0.05/Mn/sub 0.475/]O₂ electrode delivers a high discharge capacity of 187 mAh/g between 2.8 and 4.6 V at a high current density of 0.3 mA/㎠(30 mA/g) with excellent cycleability. The charge/discharge and differential capacity vs. voltage studies of the Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials showed only one redox peak up to 50 cycles, which indicates that structural phase transitions are not occurred during electrochemical cycling. The magnitude of the diffusion coefficients of lithium ions for Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂(x = 0.5 and 0.475) are around 10/sup -9/ ㎠/s measured by the galvanostatic intermittent titration technique (GITT).

  • PDF

Improved Cycle Life and Storage Performance in High-Voltage Operated Li2MnO3-LiMO2(M=Ni, Co, Mn)/Graphite Cell System by Fluorine Compounds as Main Electrolyte Solvent (고전압 구동 Li2MnO3-LiMO2(M=Ni, Co, Mn)/graphite 시스템에서의 전지 수명 및 고온 방치 특성 향상에 효과적인 플루오로 화합물계 전해액에 대한 연구)

  • Yu, Jung-Yi;Shin, Woocheol;Lee, Byong-Gon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.162-168
    • /
    • 2013
  • $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) nano-composite is a promising cathode material for xEV application due to its high theoretic capacity. However high voltage operating system of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) has worked as a hurdle in its application because of the inherent demerits, such as cycle life degradation and gas evolution. In order to enhance cell performance of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn)/graphite cell, we examined electrolyte mainly composed of FEC, fluroalkyl ether and $LiPF_6$ (F-based EL). F-based EL showed much better discharging retention ratio than 1.3 M $LiPF_6$ EC/EMC/DMC (3/4/3, v/v/v) (STD). Furthermore gas evolution, especially CO and $CO_2$ during $60^{\circ}C$ storage for 30 days was dramatically reduced owing to thermal stable SEI formation effect of F-based EL.

Enhanced Electrochemical Property of Surface Modified Li[Co1/3Ni1/3Mn1/3]O2 by ZrFx Coating

  • Yun, Su-Hyun;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.355-359
    • /
    • 2010
  • A $Li[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2$ cathode was modified by applying a $ZrF_x$ coating. The surface-modified cathodes were characterized by XRD, SEM, EDS, TEM techniques. XRD patterns of $ZrF_x$-coated $Li[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2$ revealed that the coating did not affect the crystal structure of the parent powder. SEM and TEM images showed that $ZrF_x$ nano-particles were formed as a coating layer, and EDS data confirmed that $ZrF_x$ distributed uniformly on the surface the powder. Capacity retention of coated samples at high C rates was superior to that of pristine sample. However, as the coating concentration increases beyond the optimum concentration, the rate capability was deteriorated. Whereas, as the increase of coating concentration to 2.0 wt %, the cyclic performances of the electrodes under the severe conditions (high cut-off voltage, 4.8 V, and high measurement temperature, $55^{\circ}C$) were improved considerably.

Charge-discharge Properties by Cut-off Voltage Changes of Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$ and ${LiMn_2}{O_4}$in Li-ion Secondary Batteries (코발트와 니켈로 치환한 리튬이온 이차전지 Cathode, Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$${LiMn_2}{O_4}$의 Cut-off 전압 변화에 따른 충방전 특성)

  • 유광수;박재홍;이승원;조병원
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.424-430
    • /
    • 2001
  • Cut-off 전압 변화에 따른 충방전 특성을 알아보기 위하여 Mn을 다른 전이 금속이 Co와 Ni로 소량 치환시킨 Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$(M=Ni, Co, $\delta$=0, 0.05, 0.1, 0.2)를 고상 반응법으로 80$0^{\circ}C$에서 48시간 동안 유지하여 합성하였다. 충방전의 cut-off 전압은 2.5~4.4V, 3.0~4.5V, 3.5~4.5V, 3.5V~4.7V의 네 가지 전압범위고 하였다. 충방전 실험결과, Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$의 용량은 각각 Co와 Ni의 $\delta$=0.1에서 최대를 보였다. Co 치환 조성 재료와 순물질 모두에서 최대의 용량을 보인 cut-off 전압대는 3.5~4.5V 이었는데 이때의 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$와 LiM $n_2$ $O_4$의 초기 충전용량과 초기 방전용량은 각각 118, 119mAh/g과 114, 104mAh/g 이었다. 또한 모든 cut-off 전압대에서 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$는 순수한 LiM $n_2$ $O_4$보다 더 높은 용량과 우수한 싸이클 성능을 보였으며 그 결과는 밀착형 전지구성에서도 일치하였다.하였다.

  • PDF

Electrochemical Properties of Al Doped Li(Ni1/3Co1/3Mn1/3-xAlx)O2, Cathode Materials (알루미늄이 첨가된 Li(Ni1/3Co1/3Mn1/3-xAlx)O2 양극활물질의 전기화학적 특성)

  • Kim Seon-Hye;Shim Kwang-Bo;Kim Chang-Sam
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Cathode materials of Al-doped $Li(Ni_{1/3}Co_{1/3}Mn_{1/3-x}Al_x)O_2$ (x=0.0, 0.005, 0.01 0.05) for lithium ion batteries were synthesized with ultra-sonic spray pyrolysis method and single-step heat treatment. No secondary phases were found in all synthesized powders. The intensity ratio of $I_{003}\;to\;I_{104}$, however, slightly decreased and the particle size increased with the Al contents. The cells with bare, 0.5 and 1.0 at% Al-doped powders showed the initial discharge capacities of 182, 180 and $184mAhg^{-1}$ in a voltage range of $3.0\sim4.5V$ at 1C rate, and the capacity retentions of 81, 77 and 78% at the end of 30 cycles, respectively. But in the voltage range of $3.0\sim4.6V$, the Al-doping significantly enhanced the cycle stability. For example, the discharge capacity after 50 cycles was maintained to 70% in the 0.5 at% Al-doped sample compared to only 30% in no doped sample. The improvement of the cycle stability was thought to be due to $Mn^{3+}$ ion decrease as the Al doping from the XPS analysis results.

The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 and its Electrochemical Performance as Cathode Materials for Li ion Batteries

  • Choi, Mansoo;Jo, In-Ho;Lee, Sang-Hun;Jung, Yang-Il;Moon, Jei-Kwon;Choi, Wang-Kyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.245-250
    • /
    • 2016
  • The layered $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composite with well crystalized and high specific capacity is prepared by molten-salt method and using the substitution of Na for Li-ion battery. The effects of annealing temperature, time, Na contents, and electrochemical performance are investigated. In XRD analysis, the substitution of Na-ion resulted in the P2-$Na_{2/3}MO_2$ structure ($Na_{0.70}MO_{2.05}$), which co-exists in the $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composites. The discharge capacities of cathode materials exhibited $284mAhg^{-1}$ with higher initial coulombic efficiency.

Yttrium-doped and Conductive Polymer-Coated High Nickel Layered Cathode Material with Enhanced Structural Stability

  • Shin, Ji-Woong;Lee, Seon-Jin;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.272-278
    • /
    • 2021
  • In this study, high nickel layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries were modified by yttrium doping and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) coating. The effects of yttrium doping and PEDOT:PSS coating on the structural and electrochemical properties of the LiNi0.8Co0.1Mn0.1O2 cathode material were investigated and compared. The substitution of nickel with an electrochemically inert yttrium was confirmed to be successful in stabilizing the layered structure framework. Moreover, coating the surfaces of the LiNi0.8Co0.1Mn0.1O2 particles with a conductive polymer, PEDOT:PSS, improved the capacity retention, thermal stability, and impedance of the cathode material by increasing its ionic and electric conductivities.

Technology Trends of Cathode Active Materials for Lithium Ion Battery (리튬이온 배터리용 정극재료(正極材料)의 기술동향(技術動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.79-87
    • /
    • 2012
  • With the increasing size and universalization of lithium-ion batteries, the development of cathode materials has emerged as a critical issue. The energy density of 18650 cylindrical batteries had more than doubled from 230 Wh/l in 1991 to 500 Wh/l in 2005. The energy capacity of most products ranges from 450 to 500Wh/l or from 150 to 190 Wh/kg. Product developments are focusing on high capacity, safety, saved production cost, and long life. As Co is expensive among the cathode active materials $LiCoO_2$, to increase energy capacity while decreasing the use of Co, composites such as $LiMn_2O_4$, $LiCo_{1/3}N_{i1/3}Mn_{1/3}O_2$, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$, and $LiFePO_4$-C (167 mA/g) are being developed. Furthermore, many studies are being conducted to improve the performance of battery materials to meet the requirement of large capacity output density such as 500Wh/kg for electric bicycles, 1,500Wh/kg for electric tools, and 4,000~5,000Wh/kg for EV and PHEV. As new cathodes active materials with high energy capacity such as graphene-sulfur composite cathode materials with 600 Ah/kg and the molecular cluster for secondary battery with 320 Ah/kg are being developed these days, their commercializations are highly anticipated.

Investigation of LiO2 Adsorption on LaB1-xB'xO3(001) for Li-Air Battery Applications: A Density Functional Theory Study

  • Kwon, Hyunguk;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.306-311
    • /
    • 2016
  • Li-air batteries have received much attention due to their superior theoretical energy density. However, their sluggish kinetics on the cathode side is considered the main barrier to high performance. The rational design of electrode catalysts with high activity is therefore an important challenge. To solve this issue, we performed density functional theory (DFT) calculations to analyze the adsorption behavior of the $LiO_2$ molecule, which is considered to be a key intermediate in both the Li-oxygen reduction reaction (ORR) and the evolution reaction (OER). Specifically, to use the activity descriptor approach, the $LiO_2$ adsorption energy, which has previously been demonstrated to be a reliable descriptor of the cathode reaction in Li-air batteries, was calculated on $LaB_{1-x}B^{\prime}_xO_3$(001) (B, B' = Mn, Fe, Co, and Ni, x = 0.0, 0.5). Our fast screening results showed that $LaMnO_3$, $LaMn_{0.5}Fe_{0.5}O_3$, or $LaFeO_3$ would be good candidate catalysts. We believe that our results will provide a way to more efficiently develop new cathode materials for Li-air batteries.

Effects of Precursor Co-Precipitation Temperature on the Properties of LiNi1/3Co1/3Mn1/3O2 Powders (전구체 공침 온도가 LiNi1/3Co1/3Mn1/3O2 분말의 특성에 미치는 영향)

  • Choi, Woonghee;Kang, Chan Hyoung
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.287-296
    • /
    • 2016
  • $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders have been synthesized in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH using $NH_4OH$ as a chelating agent. The co-precipitation temperature is varied in the range of $30-80^{\circ}C$. Calcination of the prepared precursors with $Li_2CO_3$ for 8 h at $1000^{\circ}C$ in air results in Li $Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders. Two kinds of obtained powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analyzer, and tap density measurements. The co-precipitation temperature does not differentiate the XRD patterns of precursors as well as their final powders. Precursor powders are spherical and dense, consisting of numerous acicular or flaky primary particles. The precursors obtained at 70 and $80^{\circ}C$ possess bigger primary particles having more irregular shapes than those at lower temperatures. This is related to the lower tap density measured for the former. The final powders show a similar tendency in terms of primary particle shape and tap density. Electrochemical characterization shows that the initial charge/discharge capacities and cycle life of final powders from the precursors obtained at 70 and $80^{\circ}C$ are inferior to those at $50^{\circ}C$. It is concluded that the optimum co-precipitation temperature is around $50^{\circ}C$.