• Title/Summary/Keyword: Catechol.

Search Result 409, Processing Time 0.024 seconds

Cloning of Catechol 2,3-dioxygenase Gene from Pseudomonas putida (Pseudomonas putida의 Catechol 2,3-dioxygenase 유전자의 클로닝)

  • 김영수;최봉수;민경락;김치경
    • Korean Journal of Microbiology
    • /
    • v.29 no.3
    • /
    • pp.155-159
    • /
    • 1991
  • Four strains of Pseudomonas putida (NAH), Pseudomonas sp.(TOL), Achromobacter xylosoxidans, and Alcaligenes sp. were compared with their degradative capability of aromatic compounds. All of the bacterial strains were utilized catechol as a sole carbon source for growth, but signigicantly different in degradative properties for 5 other aromatic compounds. Catechol 2, 3-dioxygenase gene from P. putida (NAH) has been cloned and expressed in E. coli. The DNA clone designated pCNU101 contains NAH-derived 6 Kb insert and its physical map was characterized. A subclone (pCNU106) for the catechol dioxygenase gene in pCNU101 contained 2.0kb-DNA insery fragmented by HpaI and ClaI.

  • PDF

Catechol Estrogen 4-Hydroxyestradiol is an Ultimate Carcinogen in Breast Cancer

  • Park, Sin-Aye
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • Excessive exposure to estrogens is the most important risk factor for the development of hormone-sensitive cancers, especially breast cancer. Estrogen stimulates the expression of genes and proteins involved in cell proliferation by binding to estrogen receptor (ER). Another possible mechanism of ER-independent carcinogenicity of estrogens is based on the hydroxylation of estradiol resulting in the formation of catechol estrogens. Catechol estrogen 4-hydroxyestradiol ($4-OHE_2$) is further oxidized to catechol estrogen-3,4-quinones, the major carcinogenic metabolites of estrogens. Evidence increasingly supports the critical role of $4-OHE_2$ in hormonal carcinogenesis via DNA adduct formation or production of reactive oxygen species, which finally contribute to the transformation of normal mammary epithelial cells and the enhanced growth of breast cancer cells. It is also reported that the level of $4-OHE_2$ or its quinones is highly up-regulated in urine or tissues of breast cancer patients. Thus, we highlight the oncogenic roles of $4-OHE_2$ in catechol estrogen-induced breast carcinogenesis.

Enhancement of cis,cis-Muconate Productivity by Overexpression of Catechol 1,2-Dioxygenase in Pseudomonas putida BCM114

  • Kim, Beum-Jun;Park, Won-Jae;Lee, Eun-Yeol;Park, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.112-114
    • /
    • 1998
  • For enhancement of cis,cis-muconate productivity from benzoate, catechol 1,2-dioxygenase (C12O) which catalyzes the rate-limiting step (catechol conversion to cis,cis-muconate) was cloned and expressed in recombinant Pseudomonas putida BCM114. At higher benzoate concentrations (more than 15 mM), cis,cis-muconate productivity gradually decreased and unconverted catechol was accumulated up to 10 mM in the cae of wild-type P. putida BM014, whereas cis,cis-muconate productivity continuously increased and catechol was completely transformed to cis,cis-muconate for P. putida BCM114. Specific C12O activity of P. putida BCM114 was about three times higher than that of P. putida BM014, and productivity was enhanced more than two times.

  • PDF

Isolation of Pseudomonas putida Z104 and Degra-dation Characteristics of Benzoate and Catechol (Benzoate와 Catechol을 분해하는 Pseudomonas putida Z104의 분리 및 분해특성)

  • 김기필;김준호;김민옥;박정아;정원화;김치경
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.3
    • /
    • pp.307-313
    • /
    • 2000
  • Aromatic hydrocarbons are known to be recalcitrant, so that they have been concerned as pollutant chemicals. Microorganisms play a major role in the breakdown and mineralization of these compounds. However, the kinetics of the biodegradation process may be much slower than desired from environmental consideration. The biodegradation of aromatic hydrocarbons is conducted by oxidation to produce catechol as a common intermediate which is metabolized for carbon and energy sources. In this study, a bacterial isolate capable of degrading several aromatic hydrocarbons was isolated from the contaminated wastewater of Yeocheon industrial complex. On the basis of biochemical characteristics and major cellular fatty acids, the isolate was identified as Pseudomonas putida Z104. The strain Z104 can utilize benzoate and catechol as the sole carbon and energy sources via a serial degradative pathway. The strain degraded actively 0.5 mM catechol in MM2 medium at pH 7.0 and 3$0^{\circ}C$.

  • PDF

A Study on Treatment Characteristics of the Phenol and Catechol using on Anaerobic Fluidized Bed Reactor (혐기성 유동층 반응기를 이용한 페놀과 카테콜의 처리특성에 관한 연구)

  • 김민수;박동일;홍종순;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • This study was carried to investigate the treatment characteristics of the phenol and catechol with an anaerobic fluidized bed reactor(AFBR) having a dimension of 9 cm i.d. and 1.25 m height. The reactor was operated at $35\pm 1\circ$C. The COD concentration of the effluent, the gas production rate and the composition of gas were measured to determine the performance of the AFBR as the hydraulic retention time(HRT) was decreased from 2 days to i day at 600 mg/l of the phenol and catechol concentration. Stable treatment of the phenol wastewater could be achieved with the AFBR at 18 days but the catechol wastewater couldn't be. At HRT 2 days, the phenol wastewater showed the COD reduction efficiency of 93% and the gas production of 2.7 l/day and the catechol wastewater was obtained the COD reduction efficiency of 82% and the gas production of 0.72 l/day. Also at HRT 1 day the phenol and catechol wastewater showed the COD reduction efficiency of 95% and 73% and the gas production of 4.0 l/day and 1.25 l/day, respectively.

  • PDF

Spontaneous Formation of Noble Metal Nanosturctures Using Catechol-grafted Polymer Nanofibers

  • Son, Ho-Yeon;Ryu, Ji-Hyeon;Lee, Hae-Sin;Nam, Yun-Seong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.90-90
    • /
    • 2012
  • Catechol moiety has enough reducing capability of reducing metal ions. Catechol-grafted polymer is chemically synthesized and electrospun into nanofibers as templates for metal nanostructures. The metal nanostructures are spontaneously generated on the catechol-grafted polymer nanofibers under ambient conditions.

  • PDF

Biodegradative Characteristics of Benzoate and m-Toluate by Pseudomonas sp. (Pseudomonas sp.에 의한 Benzoate와 m-Toluate 의 분해특성)

  • 정준영;김교창
    • Journal of Food Hygiene and Safety
    • /
    • v.9 no.4
    • /
    • pp.205-211
    • /
    • 1994
  • From 120 soil and activated sludge, the strains able to grow on benzoate and m-Toluate have been isolated after selective enrichment which were later identified as Psudomonas sp. according to its morphological and biochemical characteristics. Ben-2 strain contained two plasmid DNA having about 120 Kb and below 2.0 Kb by agarose gel electrophoresis. Form the comparative investigation of catechol 1,2-oxygenase and catechol 2,3-oxygenase activities in Ben-2 strain and its cured strain, Ben-2 strain has both of these two enzymes while cured strain has catechol 1,2-oxygenase only.

  • PDF

Catechol-mediated Functional Coatings of Polymer and Inorganic Nanostructures

  • Kim, Ji-Seon;Park, Jae-Yun;Son, Ho-Yeon;Lee, Hae-Sin;Nam, Yun-Seong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.66-67
    • /
    • 2012
  • As polymer coatings of nano-structured surface become significant to obtain functionalized materials, catechol derived from a mussel protein has attracted increasing attention for its universal adhesiveness. In addition to the unique adhesion property, its reducing ability of metal ions during oxidative polymerization to polydopamine (pD) widely expands the application of catechol molecules in the field of surface modification. In this study, we present the catechol conjugated smart polymer coatings for regulating surface properties such as wettability and anti-fouling effects. In additino, the in situ silver coating of electrospun polymer nanofibers using a silver-catechol redox reaction is presented as a simple method to produce metal nanostructures.

  • PDF

Simultaneous Diagnostic Assay of Catechol and Caffeine Using an in vivo Implanted Neuro Sensor

  • Ly, Suw-Young;Lee, Chang-Hyun;Jung, Young-Sam;Kwon, O-Min;Lee, Ji-Eun;Baek, Seung-Min;Kwak, Kyu-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1742-1746
    • /
    • 2008
  • Catechol and caffeine were simultaneously analyzed with a bismuth-immobilized carbon nanotube paste electrode (BPE) using square wave (SW) stripping voltammetry. Optimum analytical conditions were determined. Simultaneous working ranges of 100-1,500 $mgL^{-1}$ for caffeine and 5-75 $mgL^{-1}$ for catechol were obtained. In the separated cell systems, a working range of 0.1-2.1 $mgL^{-1}$ catechol with a correlation coefficient of 0.9935, and a working range of 10-210 $mgL^{-1}$ caffeine with a correlation coefficient of 0.9921 were obtained. A detection limit (S/N) of 0.15 $mgL^{-1}$ (7.7 ${\times}$ $10^{-7}$ M) and a detection limit of 0.02 $mgL^{-1}$ (1.82 ${\times}$ $10^{-7}$ M), respectively, manifested for catechol and caffeine. It was found that three macro-type electrode systems could be implanted in fish and rat neuro cells. For both ions, the ion currents were observed. The physiological impulse conditions and the neuronal thinking current were also obtained.

Purification and Characterization of Catechol 2,3-Dioxygenase from Recombinant Strain E. coli CNU312. (재조합균주 E. coli CNU312가 생산하는 Catechol 2,3-Dioxygenase의 정제 및 특성)

  • 임재윤;최경호;최병돈
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Catechol 2,3-dioxygenase was purified from recombinant strain E. coli CNU312 carrying the tomB gene which was cloned from toluene-degrading Burkholderia cepacia G4. The purification of this enzyme was performed by acetone precipitation, Sephadex G-75 chromatography, electrophoresis and electro-elution. The molecular weight of native enzyme was about 140.4 kDa and its subunit was estimated to be 35 kDa by SDS-PAGE. It means that this enzyme consists of four identical subunits. This enzyme was specifically active to catechol, and$K_(m)$ value and $V_(max)$value of this enzyme were 372.6 $\mu$M and 39.27 U/mg. This enzyme was weakly active to 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol, but rarely active to 2,3-DHBP. The optimal pH and temperature of the enzyme were pH 8.0 and $40^{\circ}C$. The enzyme was inhibited by $Co^(2+)$, $Mn^(2+)$, $Zn^(2+)$, $Fe^(2+)$, $Fe^(3+)$, and $Cu^(2+)$ ions, and was inactivated by adding the reagents such as N-bromosuccinimide, and $\rho$-diazobenzene sulfonic acid. The activity of catechol 2,3-dioxygenase was not stabilized by 10% concentration of organic solvents such as acetone, ethanol, isopropyl alcohol, ethyl acetate, and acetic acid, and by reducing agents such as 2-mercaptoethanol, dithiothreitol, and ascorbic acid. The enzyme was inactivated by the oxidizing agent $H_(2)$$O_(2)$, and by chelators such as EDTA, and ο-phenanthroline.

  • PDF