• Title/Summary/Keyword: Catalytic site

Search Result 307, Processing Time 0.032 seconds

LB30057 Inhibits Platelet Aggregation and Vascular Relaxation Induced by Thrombin

  • Jung, Byoung-In;Kang, a-Kyu-Tae;Bae, Ok-Nam;Lee, Moo-Yeol;Chung, Seung-Min;Lee, Sang-Koo;Kim, In-Chul;Chung, Jin-Ho
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.879-884
    • /
    • 2002
  • Previous study showed that an amidrazonophenylalanine derivative, LB30057, which has high water solubility, inhibited the catalytic activity of thrombin potently by interaction with the active site of thrombin. In the current investigation, we examined whether LB30057 inhibited platelet aggregation and vascular relaxation induced by thrombin. Treatment with LB30057 to plateletrich plasma (PRP) isolated from human blood resulted in a concentration-dependent inhibition of thrombin-induced aggregation. Values for $IC_{50}$ and $IC_{100}$ were $54{\pm}4$ nM and $96{\pm}3$ nM, respectively. This inhibition was agonist (thrombin) specific, since $IC_{50}$ values for collagen and ADP were \much greater than those for thrombin. In addition, concentration-dependent inhibitory effects were observed on the serotonin secretion induced by thrombin in PRP. Consistent with these findings, thrombin-induced increase in cytosolic calcium levels was inhibited in a concentration-dependent manner. When LB30057 was treated with aortic rings isolated from rats, LB30057 resulted in a concentration-dependent inhibition of thrombin-induced vascular relaxation. All these results suggest that LB30057 is a potent inhibitor of platelet aggregation and blood vessel relaxation induced by thrombin.

Biochemical Characterization of Exoribonuclease Encoded by SARS Coronavirus

  • Chen, Ping;Jiang, Miao;Hu, Tao;Liu, Qingzhen;Chen, Xiaojiang S.;Guo, Deyin
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.649-655
    • /
    • 2007
  • The nsp14 protein is an exoribonuclease that is encoded by severe acute respiratory syndrome coronavirus (SARS-CoV). We have cloned and expressed the nsp14 protein in Escherichia coli, and characterized the nature and the role(s) of the metal ions in the reaction chemistry. The purified recombinant nsp14 protein digested a 5'-labeled RNA molecule, but failed to digest the RNA substrate that is modified with fluorescein group at the 3'-hydroxyl group, suggesting a 3'-to-5' exoribonuclease activity. The exoribonuclease activity requires $Mg^{2+}$ as a cofactor. Isothermal titration calorimetry (ITC) analysis indicated a two-metal binding mode for divalent cations by nsp14. Endogenous tryptophan fluorescence and circular dichroism (CD) spectra measurements showed that there was a structural change of nsp14 when binding with metal ions. We propose that the conformational change induced by metal ions may be a prerequisite for catalytic activity by correctly positioning the side chains of the residues located in the active site of the enzyme.

Purification and Characterization of NAD-Dependent n-Butanol Dehydrogenase from Solvent-Tolerant n-Butanol-Degrading Enterobacter sp. VKGH12

  • Veeranagouda, Y.;Benndorf, Dirk;Heipieper, Hermann J.;Karegoudar, T.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.663-669
    • /
    • 2008
  • The solvent-tolerant bacterium Enterobacter sp. VKGH12 is capable of utilizing n-butanol and contains an $NAD^+$-dependent n-butanol dehydrogenase (BDH). The BDH from n-butanol-grown Enterobacter sp. was purified from a cell-free extract (soluble fraction) to near homogeneity using a 3-step procedure. The BDH was purified 15.37-fold with a recovery of only 10.51, and the molecular mass estimated to be 38 kDa. The apparent Michaelis-Menten constant ($K_m$) for the BDH was found to be 4 mM with respect to n-butanol. The BDH also had a broad range of substrate specificity, including primary alcohols, secondary alcohols, and aromatic alcohols, and exhibited an optimal activity at pH 9.0 and $40^{\circ}C$. Among the metal ions studied, $Mg^{2+}$ and $Mn^{2+}$ had no effect, whereas $Cu^{2+},\;Zn^{2+}$, and $Fe^{2+}$ at 1 mM completely inhibited the BDH activity. The BDH activity was not inhibited by PMSF, suggesting that serine is not involved in the catalytic site. The known metal ion chelator EDTA had no effect on the BDH activity. Thus, in addition to its physiological significance, some features of the enzyme, such as its activity at an alkaline pH and broad range of substrate specificity, including primary and secondary alcohols, are attractive for application to the enzymatic conversion of alcohols.

Comparative Reverse Screening Approach to Identify Potential Anti-neoplastic Targets of Saffron Functional Components and Binding Mode

  • Bhattacharjee, Biplab;Vijayasarathy, Sandhya;Karunakar, Prashantha;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5605-5611
    • /
    • 2012
  • Background: In the last two decades, pioneering research on anti-tumour activity of saffron has shed light on the role of crocetin, picrocrocin and safranal, as broad spectrum anti-neoplastic agents. However, the exact mechanisms have yet to be elucidated. Identification and characterization of the targets of bioactive constituents will play an imperative role in demystifying the complex anti-neoplastic machinery. Methods: In the quest of potential target identification, a dual virtual screening approach utilizing two inverse screening systems, one predicated on idTarget and the other on PharmMapper was here employed. A set of target proteins associated with multiple forms of cancer and ranked by Fit Score and Binding energy were obtained from the two independent inverse screening platforms. The validity of the results was checked by meticulously analyzing the post-docking binding pose of the picrocrocin with Hsp90 alpha in AutoDock. Results: The docking pose reveals that electrostatic and hydrogen bonds play the key role in inter-molecular interactions in ligand binding. Picrocrocin binds to the Hsp90 alpha with a definite orientation appropriate for nucleophilic attacks by several electrical residues inside the Hsp90-alpha ATPase catalytic site. Conclusion: This study reveals functional information about the anti-tumor mechanism of saffron bioactive constituents. Also, a tractable set of anti-neoplastic targets for saffron has been generated in this study which can be further authenticated by in vivo and in vitro experiments.

Identification of Proapoptopic, Anti-Inflammatory, Anti-Proliferative, Anti-Invasive and Anti-Angiogenic Targets of Essential Oils in Cardamom by Dual Reverse Virtual Screening and Binding Pose Analysis

  • Bhattacharjee, Biplab;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3735-3742
    • /
    • 2013
  • Background: Cardamom (Elettaria cardamom), also known as "Queen of Spices", has been traditionally used as a culinary ingredient due to its pleasant aroma and taste. In addition to this role, studies on cardamom have demonstrated cancer chemopreventive potential in in vitro and in vivo systems. Nevertheless, the precise poly-pharmacological nature of naturally occurring chemo-preventive compounds in cardamom has still not been fully demystified. Methods:In this study, an effort has been made to identify the proapoptopic, anti-inflammatory, anti-proliferative, anti-invasive and anti-angiogenic targets of Cardamom's bioactive principles (eucalyptol, alpha-pinene, beta-pinene, d-limonene and geraniol) by employing a dual reverse virtual screening protocol. Experimentally proven target information of the bioactive principles was annotated from bioassay databases and compared with the virtually screened set of targets to evaluate the reliability of the computational identification. To study the molecular interaction pattern of the anti-tumor action, molecular docking simulation was performed with Auto Dock Pyrx. Interaction studies of binding pose of eucalyptol with Caspase 3 were conducted to obtain an insight into the interacting amino acids and their inter-molecular bondings. Results:A prioritized list of target proteins associated with multiple forms of cancer and ranked by their Fit Score (Pharm Mapper) and descending 3D score (Reverse Screen 3D) were obtained from the two independent inverse screening platforms. Molecular docking studies exploring the bioactive principle targeted action revealed that H- bonds and electrostatic interactions forms the chief contributing factor in inter-molecular interactions associated with anti-tumor activity. Eucalyptol binds to the Caspase 3 with a specific framework that is well-suited for nucleophilic attacks by polar residues inside the Caspase 3 catalytic site. Conclusion:This study revealed vital information about the poly-pharmacological anti-tumor mode-of-action of essential oils in cardamom. In addition, a probabilistic set of anti-tumor targets for cardamom was generated, which can be further confirmed by in vivo and in vitro experiments.

Chemical Modification of Bovine Brain Succinic Semialdehyde Reductase by Diethylpyrocarbonate

  • Lee, Byung-Ryong;Jeon, Seong-Gyu;Bahn, Jae-Hoon;Choi, Kyung-Soon;Yoon, Byung-Hak;Ahn, Yoon-Kyung;Choi, Eun-A;Lee, Kil-Soo;Cho, Sung-Woo;Choi, Soo-Young
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.254-258
    • /
    • 1999
  • The NADPH-dependent succinic semialdehyde reductase is one of the key enzymes in the brain GABA shunt, and it catalyzes the formation of the neuromodulator $\gamma$-hydroxybutyrate from succinic semi aldehyde. This enzyme was inactivated by diethylpyrocarbonate (DEP) with the second-order rate constant of $1.1{\times}10^3\;M^{-1}min^{-1}$ at pH 7.0, $25^{\circ}C$, showing a concomitant increase in absorbance at 242 nm due to the formation of N-carbethoxyhistidyl derivatives. Complete inactivation of succinic semialdehyde reductase required the modification of five histidyl residues per molecule of enzyme. However, only one residue was calculated to be essential for enzyme activity by a statistical analysis of the residual enzyme activity. The inactivation of the enzyme by DEP was prevented by preincubation of the enzyme with the coenzyme NADPH but not with the substrate succinic semialdehyde. These results suggest that an essential histidyl residue involved in the catalytic activity is located at or near the coenzyme binding site of the brain succinic semialdehyde reductase.

  • PDF

Cathepsin S as a Cancer Therapeutic Target (암 치료 표적으로써 cathepsin S)

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.753-763
    • /
    • 2018
  • Cysteine cathepsins are lysosomal enzymes that belong to the papain family and can induce the degradation of damaged proteins through the endo-lysosomal pathway. It is highly upregulated in many cancers by regulating gene amplification and transcriptional, translational, and post-transcriptional modifications. Cathepsin S is part of the cysteine cathepsin family. Many studies have demonstrated that cathepsin S not only plays a specific role in MHC class II antigen presentation but also plays a crucial role in cancers. Cathepsin S is more stable at a neutral pH compared to other cysteine cathepsins, which supports the importance of cathepsin S in disease microenvironments. Therefore, the dysregulation of cathepsin S has participated in a variety of pathological processes, including cancer, arthritis, and cardiovascular disease. Furthermore, a decrease or depletion in the expression of cathepsin S has been implicated in the processes of tumor growth, invasion, metastasis, and angiogenesis. Taken together, cathepsin S has been suggested as an attractive therapeutic target for cancer therapy. In this review, the known involvement of cathepsin S in diseases, particularly with respect to recent work indicating its role in cancer therapy, is examined. An overview of current literature on the inhibitors of cathepsin S as a therapeutic target for cancer is also provided.

Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase

  • Min, Kyungjin;Yoon, Hye-Jin;Matsuura, Atsushi;Kim, Yong Hwan;Lee, Hyung Ho
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.331-341
    • /
    • 2018
  • L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes ${\beta}$-deamination of L-lysine into L-pipecolic acid using ${\beta}$-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, ${\mu}$-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with $NAD^+$, (ii) a ternary complex with $NAD^+$ and L-pipecolic acid, (iii) a ternary complex with $NAD^+$ and L-proline, and (iv) a ternary complex with $NAD^+$ and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida. In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that $NAD^+$ is initially converted into NADH and then reverted back into $NAD^+$ at a late stage of the reaction.

A Short-chain Dehydrogenase/reductase Gene is Required for Infection-related Development and Pathogenicity in Magnaporthe oryzae

  • Kwon, Min-Jung;Kim, Kyoung-Su;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • The phytopathogenic fungus Magnaporthe oryzae is a major limiting factor in rice production. To understand the genetic basis of M. oryzae pathogenic development, we previously analyzed a library of T-DNA insertional mutants of M. oryzae, and identified ATMT0879A1 as one of the pathogenicity-defective mutants. Molecular analyses and database searches revealed that a single TDNA insertion in ATMT0879A1 resulted in functional interference with an annotated gene, MGG00056, which encodes a short-chain dehydrogenase/reductase (SDR). The mutant and annotated gene were designated as $MoSDR1^{T-DNA}$ and MoSDR1, respectively. Like other SDR family members, MoSDR1 possesses both a cofactor-binding motif and a catalytic site. The expression pattern of MoSDR1 suggests that the gene is associated with pathogenicity and plays an important role in M. oryzae development. To understand the roles of MoSDR1, the deletion mutant ${\Delta}Mosdr1$ for the gene was obtained via homology-dependent gene replacement. As expected, ${\Delta}Mosdr1$ was nonpathogenic; moreover, the mutant displayed pleiotropic defects in conidiation, conidial germination, appressorium formation, penetration, and growth inside host tissues. These results suggest that MoSDR1 functions as a key metabolic enzyme in the regulation of development and pathogenicity in M. oryzae.

Isolation of Microcystin-LR and Its Potential Function of Ionophore

  • Kim, Gilhoon;Han, Seungwon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.67-73
    • /
    • 2015
  • The microcystin is a cyclic heptapeptide from metabolites of cyanobacteria in the genera mycrocystis, anabaeba as a result of eutrophication. It has been known that microcystin-LR is a potent inhibitor of the catalytic subunits of protein phosphatase-1 (PP-1) as well as powerful tumor promoter. The active site of microcystin actually has two metal ions $Fe^{2+}/Zn^{2+}$ close to the nucleophilic portion of PP-1-microcystin complex. We report the isolation and purification of this microcystin-LR from cyanobacteria (blue-green algae) obtained from Daechung Dam in Chung-cheong Do, Korea. Microcystin-LR was extracted from solid-phase extraction (SPE) sample preparation using a CN cartridge. The cyanobacteria extract was purified to obtain microcystin-LR by HPLC method and identified by LC/MS. The detail structural studies that can elucidate the possible role of monovalent and divalent metal ions in PP-1-microcystin complexation were carried out by utilizing molecular dynamics. Conformational changes in metal binding for ligands were monitored by molecular dynamic computation and potential of mean force (PMF) using the method of the free energy perturbation. The microcystin-metal binding PMF simulation results exhibit that microcystin can have very stable binding free energy of -10.95 kcal/mol by adopting the $Mg^{2+}$ ion at broad geometrical distribution of $0.5{\sim}4.5{\AA}$, and show that the $K^+$ ion can form a stable metal complex rather than other monovalent alkali metal ions.