• Title/Summary/Keyword: Catalytic electrode

Search Result 191, Processing Time 0.024 seconds

Application of Porous Carbon Catalyst Activating Reaction of Positive Electrode in Vanadium Redox Flow Battery (바나듐 레독스 흐름전지의 양극반응 활성화를 위한 다공성 탄소 촉매의 적용)

  • Jeong, Sanghyun;Chun, Seung-Kyu;Lee, Jinwoo;Kwon, Yongchai
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.150-156
    • /
    • 2014
  • In this study, we implemented a research for improving performance of redox flow battery (RFB) via enhancing reaction rate of vanadium reaction ($[VO]^{2+}/[VO_2]^+$) that was a rate determining step. For doing that, porous catalyst, CMK3 was employed and its perfoamance was compared with that of Vulcan(XC-72) and commercial Pt/C (Johnson-Matthey Pt 20wt.%). Cyclic voltammetry (CV) was used for inspecting reactivity, while its structural feature was measured by TEM and BET&BJH. Also, Charge-discharge trend was evaluated by single cell tests. As result, CMK3 showed 6 times better catalytic activity and twice better reversibility than Vulcan(XC-72), while it showed larger surface area than Vulcan XR due to its porous structure. Furthermore, CMK3 indicated 85% of reactivity and reversibility of commercial Pt/C despite its Pt-less situation. In single cell tests, when RFB adopted CMK3 as catalyst for positive electrode, its charge-discharge curve result was better than that adopted commercial Pt/C.

Synthesis of Several Osmium Redox Complexes and Their Electrochemical Characteristics in Biosensor (오스뮴 착물들의 합성 및 전기화학적인 특성에 관한 연구)

  • Kim, Hyug-Han;Choi, Young-Bong;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2008
  • Redox complexes to transport electrodes from bioreactors to electrodes are very important part in electrochemical biosensor industry. A novel osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium metal. Newly synthesized osmium complexes are described as ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dmo-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dcl-bpy)}_2{(ap-im)Cl]}^{+/2+}$. We have been studied the electrochemical characteristics of these osmium complex with electrochemical techniques such as cyclic voltammetry and chronoamperommetry. Osmium redox complexes were immobilized on the screen printed carbon electrode(SPE) with deposited gold nanoparticles. The electrical signal converts the osmium redox films into an electrocatalyst for glucose oxidation. Each catalytic currents were related with the potentials of osmium complexes.

A new nano-composite carbon ink for disposable dopamine biosensors (나노컴포지트 카본 잉크가 전착된 일회용 도파민 바이오센서)

  • Dinakaran, T.;Chang, S.-C.
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at −0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 µM of DA, and the sensor’s sensitivity was calculated to be 0.4 µAµM−1cm−2.

Various Temperatures Affecting Characteristics of Pt/C Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells (Polymer Electrolyte Membrane Fuel Cells용 Pt/C 캐소드 전극촉매 특성에 미치는 반응 온도)

  • Yoo, Sung-Yeol;Kang, Suk-Min;Lee, Jin-A;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.180-185
    • /
    • 2011
  • This study is aimed to increase the activity of cathodic catalysts for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). we investigated the temperature effect of 20wt% Pt/C catalysts at five different temperatures. The catalysts were synthesized by using chemical reduction method. Before adding the formaldehyde as reducing agent, process was undergone for 2 hours at the room temperature (RT), $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, respectively. The performances of synthesize catalysts are compared. The electrochemical oxygen reduction reaction (ORR) was studied on 20wt% Pt/C catalysts by using a glassy carbon electrode through cyclic voltammetric curves (CV) in a 1M H2SO4 solution. The ORR specific activities of 20wt% Pt/C catalysts increased to give a relative ORR catalytic activity ordering of $80^{\circ}C$ > $100^{\circ}C$ > $60^{\circ}C$ > $40^{\circ}C$ > RT. Electrochemical active surface area (EAS) was calculated with cyclic voltammetry analysis. Prepared Pt/C (at $80^{\circ}C$, $100^{\circ}C$) catalysts has higher ESA than other catalysts. Physical characterization was made by using X-ray diffraction (XRD) and transmission electron microscope (TEM). The TEM images of the carbon supported platinum electrocatalysts ($80^{\circ}C$, $100^{\circ}C$) showed homogenous particle distribution with particle size of about 2~3.5 nm. We found that a higher reaction temperature resulted in more uniform particle distribution than lower reaction temperature and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.

Synthesis and Characterization of CNT / TiO2 Photoelectrocatalytic Electrodes for Methlene Blue Degradation

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.583-591
    • /
    • 2008
  • In this study, two series of CNT/$TiO_2$ electrodes were prepared. The decrease of surface area compared with that of the pristine carbon nanotubes (CNTs) indicated the blocking of micropores on the surface of the CNTs; was further supported by scanning electron microscopy (SEM) and field emission SEM (FE-SEM) observations. The X-ray diffraction (XRD) results showed that the CNT/$TiO_2$ composites contained a mix of anatase and rutile forms of $TiO_2$ particles when the precursor was $TiO_2$ powder, whereas when the precursor was Ti ($OC_4H_7$) (TNB), the composites contained only the typical single and clear anatase $TiO_2$ particles. The energy dispersive X-ray spectroscopy (EDX) spectra showed the presence of C, O and Ti peaks for all samples. It was found that catalytic decomposition of methylene blue (MB) solution could be attributed to synthetic effects between the $TiO_2$ photocatalysis and electro-assisted CNTs network, and that photoelectrocatalytic oxidation increased with an increase of CNT composition. It was also found that the photoelectrocatalytic oxidation efficiency for MB is higher than that of photocatalytic oxidation. Moreover, the CNT/$TiO_2$ composites catalyst prepared by the impregnation method demonstrates higher photoelectrocatalytic activity than the mechanical mixture with the same CNT content.

Characteristics of Plasma Blacks Used as an Electrode of Direct Formic Acid Fuel Cell

  • Park, Young-Sook;Choi, Jong-Ho;Han, Jong-Hee;Lim, Tae-Hoon;Beak, Young-Soon;Ju, Jeh-Beck;Shon, Tae-Won;Lee, Joong-Kee
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Plasma carbon blacks of 20~30 nm diameter were synthesized by direct decomposition of natural gas using a hybrid plasma torch system with 50 kW direct current and 4 MHz of radio frequency. The insulating rector which inside diameter of 400 mm and length of 1500 mm, respectively was kept at 300~$400^{\circ}C$ during the preparation. The ultimate analysis of plasma carbon blacks reveals that the raw plasma carbon blacks contains a large quantity of volatile which is mainly consist of hydrogen. Therefore devolatilization of raw plasma carbon blacks were carried out at $900^{\circ}C$ for one hour under nitrogen atmosphere. The devolatilization leads to the decrease in electrical resistivity and surface oxygen functional groups of plasma carbon black significantly. In order to investigate the plasma carbon as a catalyst support, devolatilized plasma black at $900^{\circ}C$ (DPB) supported PtAu catalyst was synthesized by sodium boronhydride reduction method. Electrochemical measurements and direct formic acid fuel cell test indicated that catalytic activity of DPB supported PtAu catalyst for formic acid oxidation was similar to that of Vulcan XC-72 of commercial carbon black supported one.

  • PDF

Methanol Electro-Oxidation of Electro-Spun RuO2 Nanowire Supported Pt Catalysts (Electro-Spun RuO2 나노선 지지체에 담지된 Pt촉매의 메탄올 Electro-Oxidation 특성)

  • Yeom, Yong-Sik;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.419-424
    • /
    • 2011
  • Pt nanoparticle catalysts incorporated on $RuO_2$ nanowire support were successfully synthesized and their electrochemical properties, such as methanol electro-oxidation and electrochemically active surface (EAS) area, were demonstrated for direct methanol fuel cells (DMFCs). After fabricating $RuO_2$ nanowire support via an electrospinning method, two different types of incorporated Pt nanoparticle electrocatalysts were prepared using a precipitation method via the reaction with $NaBH_4$ as a reducing agent. One electrocatalyst was 20 wt% Pt/$RuO_2$, and the other was 40 wt% Pt/$RuO_2$. The structural and electrochemical properties of the Pt nanoparticle electrocatalysts incorporated on electrospun $RuO_2$ nanowire support were investigated using a bright field transmission electron microscopy (bright field TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. The bright field TEM, XRD, and XPS results indicate that Pt nanoparticle electrocatalysts with sizes of approximately 2-4 nm were well incorporated on the electrospun $RuO_2$ nanowire support with a diameter of approximately 50 nm. The cyclic voltammetry results showed that the Pt nanoparticle catalysts incorporated on the electrospun $RuO_2$ nanowire support give superior catalytic activity in the methanol electro-oxidation and a higher electrochemically active surface (EAS) area when compared with the electrospun Pt nanowire electrocatalysts without the $RuO_2$ nanowire support. Therefore, the Pt nanoparticle catalysts incorporated on the electrospun $RuO_2$ nanowire support could be a promising electrode for direct methanol fuel cells (DMFCs).

Spindle-shaped Fe2O3 Nanoparticle Coated Carbon Nanofiber Composites for Low-cost Dye-sensitized Solar Cells (저비용 염료감응 태양전지를 위한 방추형 Fe2O3 나노입자가 코팅된 탄소나노섬유 복합체)

  • Oh, Dong-Hyeun;An, HyeLan;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • Carbon nanofiber (CNF) composites coated with spindle-shaped $Fe_2O_3$ nanoparticles (NPs) are fabricated by a combination of an electrospinning method and a hydrothermal method, and their morphological, structural, and chemical properties are measured by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. For comparison, CNFs and spindle-shaped $Fe_2O_3$ NPs are prepared by either an electrospinning method or a hydrothermal method, respectively. Dye-sensitized solar cells (DSSCs) fabricated with the composites exhibit enhanced open circuit voltage (0.70 V), short-circuit current density ($12.82mA/cm^2$), fill factor (61.30%), and power conversion efficiency (5.52%) compared to those of the CNFs (0.66 V, $11.61mA/cm^2$, 51.96%, and 3.97%) and spindle-shaped $Fe_2O_3$ NPs (0.67 V, $11.45mA/cm^2$, 50.17%, and 3.86%). This performance improvement can be attributed to a synergistic effect of a superb catalytic reaction of spindle-shaped $Fe_2O_3$ NPs and efficient charge transfer relative to the one-dimensional nanostructure of the CNFs. Therefore, spindle-shaped $Fe_2O_3$-NP-coated CNF composites may be proposed as a potential alternative material for low-cost counter electrodes in DSSCs.

Increase in Discharge Capacity of Li Battery Assembled with Electrochemically Prepared V2O5/polypyrrole-composite-film Cathode

  • Kim, You-Na;Kim, Joo-Seong;Thieu, Minh-Triet;Dinh, Hung-Cuong;Yeo, In-Hyeong;Cho, Won-Il;Mho, Sun-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3109-3114
    • /
    • 2010
  • Flexible composite films of $V_2O_5$ and conductive polypyrrole ($V_2O_5$/PPy) were grown by facile electrochemical polymerization, wherein an anodization potential was applied to the substrate electrode in an electrolyte solution containing pyrrole monomer and dispersed $V_2O_5$ particles. The coating of polypyrrole (PPy) on the surface of $V_2O_5$ particles was induced by the oxidative catalytic action of $V_2O_5$ during the electrochemical polymerization of pyrrole. PPy in the composite film connects the isolated $V_2O_5$ particles. This results in the formation of conductive networks in the composite film cathode, thereby enhancing the Li+ ion diffusion to the surface of the isolated $V_2O_5$ particles and thus increasing the accessibility of the $Li^+$ ions. The specific capacity tests of the Li rechargeable batteries revealed that the discharge capacity of this composite film cathode was higher, i.e., $497\;mAhg^{-1}$, than that of $V_2O_5$/PPy powder or pristine $V_2O_5$.

In-situ spectroscopic studies of SOFC cathode materials

  • Ju, Jong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF