DOI QR코드

DOI QR Code

Synthesis of Several Osmium Redox Complexes and Their Electrochemical Characteristics in Biosensor

오스뮴 착물들의 합성 및 전기화학적인 특성에 관한 연구

  • 김혁한 (단국대학교 첨단과학대학 화학과) ;
  • 최영봉 (단국대학교 첨단과학대학 화학과) ;
  • 태건식 (단국대학교 첨단과학대학 생명과학과)
  • Published : 2008.08.31

Abstract

Redox complexes to transport electrodes from bioreactors to electrodes are very important part in electrochemical biosensor industry. A novel osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium metal. Newly synthesized osmium complexes are described as ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dmo-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dcl-bpy)}_2{(ap-im)Cl]}^{+/2+}$. We have been studied the electrochemical characteristics of these osmium complex with electrochemical techniques such as cyclic voltammetry and chronoamperommetry. Osmium redox complexes were immobilized on the screen printed carbon electrode(SPE) with deposited gold nanoparticles. The electrical signal converts the osmium redox films into an electrocatalyst for glucose oxidation. Each catalytic currents were related with the potentials of osmium complexes.

본 연구에서는 8족 금속 원소인 osmium을 중심금속으로 4가지의 착물을 합성하였다. 합성한 착물은 ${[Os(bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dmo-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dcl-bpy)}_2{(ap-im)Cl]}^{+/2+}$이다. 합성된 착물을 순환전압전류법을 포함한 다양한 전기화학분석방법을 이용하여 전기적 성질을 조사하여 작용기에 따른 전위의 변화를 다음의 전위구간에서 $E_p$:$-0.06\;V{\sim}0.313\;V$ vs. Ag/AgCl 확인하였다. 합성한 화합물을 전기적 흡착방법으로 고정된 금나노입자(gold nano-particles)를 전극 위에 자기조립방식으로 고정화를 시켰다. 당과 당 분해효소(Glucose Oxidase, GOx)에 의한 촉매반응의 전류를 확인하였고, glucose농도에 따른 변화하는 전류의 양도 확인하였다. 마지막으로 고정된 4가지의 osmium complex는 서로 다른 전위로 인하여 촉매전류의 양이 달라지는 것을 알 수 있었고, 이로 인해 redox complex의 전위가 촉매반응에 미치는 영향을 확인 할 수 있었다.

Keywords

References

  1. L. C. Clark Jr. and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery" Ann. N.Y. Acad. Sci., 102, 29 (1962) https://doi.org/10.1111/j.1749-6632.1962.tb13623.x
  2. A. J. Cunningham, "Introduction to Bioanalytical Sensors" John Wiley and Sons Inc., 46, (1998)
  3. B. Eggins, "Introduction to Biosensor" John Wiley and Sons Inc., 3, (1999)
  4. M. V. Pishko, A. C. Michael, and Adam Heller, "Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels" Anal. Chem., 63, 2269 (1991)
  5. H. Yang, T. D. Chung, Y. T. Kim, C. A. Choi, C. H. Jun, and H. C. Kim, "Glucose sensor using a microfabricated electrode and electropolymerized bilayer films" Biosens. Bioelectron., 17, 251 (2002) https://doi.org/10.1016/S0956-5663(01)00266-4
  6. T. J. Ohara, R. Rajagopalan, and A. Heller, "'Wired' enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances" Anal. Chem., 66, 2451 (1994) https://doi.org/10.1021/ac00087a008
  7. B. A. Gregg and A. Heller, "Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes" J. Phys. Chem., 95, 5976 (1991) https://doi.org/10.1021/j100168a047
  8. K. Yamamoto, H. Zeng, Y. Shen, M. M. Ahmed, and T. Kato, "Evaluation of an amperometric glucose biosensor based on a ruthenium complex mediator of low redox potential" Talanta, 66, 1175 (2005) https://doi.org/10.1016/j.talanta.2005.01.036
  9. E. Eskelinen, M. Haukka, J. J. Kinnunen, and T. A. Pakkanen, "The effect of bipyridine modifications on the electrochemical and electronic properties of Ru(II)- bipyridine carbonyls" J. Electroanal. Chem., 556, 103 (2003) https://doi.org/10.1016/S0022-0728(03)00335-8
  10. P. E. A. Ribeiro, C. L. Donnici, and E. N. Santos, "Cationic rhodium(I) complexes containing 4,4'-disubstituted 2,2'- bipyridines: A systematic variation on electron density over the metal centre" J. Organometal. Chem., 691, 2037 (2006) https://doi.org/10.1016/j.jorganchem.2005.12.049
  11. N. Madhiri and H. O. Finklea, "Potential-, pH-, and Isotope- Dependence of Proton-Coupled Electron Transfer of an Osmium Aquo Complex Attached to an Electrode" Langmuir, 22, 10643 (2006) https://doi.org/10.1021/la061103j
  12. R. M. Haddox and H. O. Finklea, "Proton-Coupled Electron Transfer of an Osmium Aquo Complex on a self- Assembled Monolayer on Gold" J. Phys. Chem. B, 108, 1694 (2004) https://doi.org/10.1021/jp035967e
  13. C. Taylor, G. Kenausis, I. Katakis, and A. Heller, "'Wiring' of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with [(Os-4,4'-dimethoxy- 2,2'-bipyridine)$Cl]^{+/2+}$ " J. Electroanal. Chem., 396, 511 (1995) https://doi.org/10.1016/0022-0728(95)04080-8
  14. S. Anderson, E. C. Constable, K. R. Seddon, E. T. Turp, J. E. Baggott, and J. Pilling, "Preparation and characterization of 2,2-bipyridine-4,4-disulphonic and-5-sulphonic acids and their ruthenium(II) complexes" J. Chem. Soc. Dalton Trans., 2247 (1985)
  15. G. Maerker and F. H. Case, "The Synthesis of Some 4,4'- Disubstituted 2,2'-Bipyridines" J. Am. Chem. Soc., 80, 2745 (1958) https://doi.org/10.1021/ja01544a042
  16. M. O. Finot, G. D. Braybrook, and M. T. McDermott, "Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes" J. Electroanal. Chem., 466, 234 (1999) https://doi.org/10.1016/S0022-0728(99)00154-0
  17. M. O. Finot and M. T. McDermott, "Characterization of n-alkanethiolate monolayers adsorbed to electrochemically deposited gold nanocrystals on glassy carbon electrodes" J. Electroanal. Chem., 488, 125 (2000) https://doi.org/10.1016/S0022-0728(00)00201-1
  18. Y. Li and G. Shi, "Electrochemical Growth of Two- Dimensional Gold Nanostructures on a Thin Polypyrrole Film Modified ITO Electrode" J. Phys. Chem. B, 109, 23787 (2005) https://doi.org/10.1021/jp055256b
  19. X. Ren, X. Meng, and F. Tang, "Preparation of Ag-Au nanoparticle and its application to glucose biosensor" Sensors and Actuators B 110, 358 (2005) https://doi.org/10.1016/j.snb.2005.02.016
  20. Y.-B. Choi and H.-H. Kim, "Synthesis of osmium redox complex and its application for biosensor using an electrochemical method" J Kor. Electrochem. Soc., 10, 152 (2007) https://doi.org/10.5229/JKES.2007.10.2.150
  21. D. M. Fraser, S. M. Zakeeruddin, and M. Gratzel, "Towards mediator design II. Optimization of mediator global charge for the mediation of glucose oxidase of Aspergilus niger" J. Electroanal. Chem., 359, 125 (1993) https://doi.org/10.1016/0022-0728(93)80405-7
  22. E. S. Dodsworth, A. A. Vleck, and A. B. P. Lever, "Factorization of Ligand-Based Reduction Potentials" Inorg. Chem., 33, 1045 (1994) https://doi.org/10.1021/ic00084a013
  23. S. M. Zakeeruddin, D. M. Fraser, M-K Nazeeruddin, and M. Gratzel, "Towards mediator design: charaterization of tris-(4,4'-substituted-2,2'-bipyridine)complex of iron(II), ruthenium(II) and osmium(II) as mediators for glucose oxidase of Aspergilus niger and other redox proteins" J. Electroanal. Chem., 337, 253 (1992) https://doi.org/10.1016/0022-0728(92)80542-C
  24. A. Ulman, A. An Introduction to Ultrathin Organic Fils from Langmuir-Blodgett to Self-Assebly, Academic Press: NewYork (1991)
  25. G. T. R. Palmore and H.-H. Kim, "Eletro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell" J. Electroanal. Chem., 464, 110 (1999) https://doi.org/10.1016/S0022-0728(99)00008-X
  26. N. Mano, F. Mao, and A. Heller, "Charateristics of a Miniature Compartment-less Glucose-$O_{2}$ Biofuel Cell and Its Operation in a Living Plant" J. Am. Chem. Soc., 125, 6588 (2003) https://doi.org/10.1021/ja0346328
  27. S. C. Barton, H.-H. Kim, G. Binyamin, Y. Zhang, and A. Heller, "The "wired" Laccase Cathode: High Current Density Electroreduction of $O_{2}$ to Water at +0.7 V (NHE) at pH 5" J. Am. Chem. Soc., 123, 5802 (2001) https://doi.org/10.1021/ja010408b

Cited by

  1. Electrochemical Detection of Uric Acid using Three Osmium Hydrogels vol.19, pp.2, 2016, https://doi.org/10.5229/JKES.2016.19.2.29