• Title/Summary/Keyword: Catalytic Oxidation Reaction

Search Result 295, Processing Time 0.025 seconds

Homogeneous and Catalytic Methanol Synthesis by Partial Oxidation of Methane (메탄의 균일 및 접촉부분산화에 의한 메탄올 합성)

  • Hahm, Hyun-Sik;Choi, Woo-Jin;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.56-61
    • /
    • 2005
  • Methanol was synthesized by homogeneous and catalytic reactions of partial oxidation of methane. The effect of pressure, temperature and oxygen concentration on methanol synthesis was investigated. The catalyst used was Bi-Cs-Mg-Cu-Mo mixed oxide. The partial oxidation reaction was carried out in a fixed bed reactor at 20${\sim}$46 bar and $450{\sim}480^{\circ}C$ and oxygen concentration of 5.3${\sim}$7.7mol%. The results were compared with results of homogeneous reaction performed at the same conditions. Methane conversions of the homogeneous and catalytic reactions increased with temperature. Methanol selectivity of the homogeneous reaction decreased with increasing temperature. However, the methanol selectivity of catalytic reaction increased with temperature. For both homogeneous and catalytic reactions, the methane conversions were around 5%. This may be due to the low oxygen concentration. Methanol selectivity of the catalytic reaction was higher than that of homogeneous one.

Adsorption and Oxidation Reaction Rate of $SO_2$ in Slurries of Activated Carbon (활성탄 슬러리를 이용한 $SO_2$ 가스의 흡착 및 산화반응 속도)

  • 최용택;신창섭;이태희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.41-46
    • /
    • 1987
  • Adsorption and reaction studies were made for the catalytic oxidation in aqueous slurries of activated carbon at room temperature and atmospheric pressure. In order to analyze the reaction rate, the mechanism was assumed by the steps of nonhomogeneous catalytic reaction. The experimental result show that oxidation rate was controlled by the reaction between adsorbed molecular oxygen and sulfur dioxide on the catalyst surface. Ar room temperature, the equat5ion of reaction rate was given as $ro_2 = 2.49 \times 10^{-7} P_O_2^{0.604}$.

  • PDF

Oxidative Decomposition of TCE over TiO2-Supported Metal Oxide Catalysts (TiO2에 담지된 금속 산화물 촉매상에서 TCE 산화분해반응)

  • Yang Won-Ho;Kim Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.221-227
    • /
    • 2006
  • Oxidative TCE decomposition over $TiO_2$-supported single and complex metal oxide catalysts has been conducted using a continuous flow type fixed-bed reactor system. Different types of commercial $TiO_2$ were used for obtaining the supported catalysts via an incipient wetness technique. Among a variety of titanias and metal oxides used, a DT51D $TiO_2\;and\;CrO_x$ would be the respective promising support and active ingredient for the oxidative TCE decomposition. The $TiO_2-based\;CrO_x$ catalyst gave a significant dependence of the catalytic activity in TCE oxidation reaction on the metal loadings. The use of high $CrO_x$ contents for preparing $CrO_x/TiO_2$ catalysts might produce $Cr_2O_3$ crystallites on the surface of $TiO_2$, thereby decreasing catalytic performance in the oxidative decomposition at low reaction temperatures. Supported $CrO_x$-based bimetallic oxide systems offered a very useful approach to lower the $CrO_x$ amounts without any loss in their catalytic activity for the catalytic TCE oxidation and to minimize the formation of Cl-containing organic products in the course of the catalytic reaction.

PARTIAL OXIDATION OF PROPANE ON NAFION SUPPORTED CATALYTIC MEMBRANE

  • F. Frusteri;C. Espro;F. Arena;F. Arena;E. Passalacqua;A.Patti;A. Parmaliana
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.55-58
    • /
    • 1999
  • Nafion supported catalytic membranes were found to be active, stable and selective in th partial oxidation of propane to oxygenates with H2O2 under mild condition. Addition of Fe2+ in liquid phase enhances the reaction rate. Reaction proceeds according to a radical mechanism based on th electrophilic activation of propane on superacid sites and subsequent reaction of the activated paraffin with OH radicals. The use of a catalytic membrane, which allow separation of the intermediate products from the liquid phase containing the oxidant, was found to be effective to perform selective partial oxidation of propane with high yields to oxygenated products.

Decomposition of Ethylene Glycol by Catalytic Wet Air Oxidation (촉매습식산화에 의한 Ethylene Glycol의 분해)

  • 안상준;최장승;이동근
    • Textile Coloration and Finishing
    • /
    • v.13 no.4
    • /
    • pp.264-271
    • /
    • 2001
  • Catalytic wet oxidation of ethylene glycol as refractory compound was studied in a batch slurry reactor using lwt% $Pt/A1_2O_3$, lwt% $Pt/TiO_2,\;Mn/CeO_2$(1:1) and 5wt% $Mn/Al_2O_3$. Experiments were conducted to investigate theeffects of temperature, initial ethylene glycol concentration, catalyst dosage and PH on the ethylene glycol decomposition. When compared with the uncatalyzed reaction, the use of catalysts could increase the rate of ethylene glycol decomposition. The lwt% $Pt/A1_2O_3$ catalyst was preferable to the other catalysts for the destructive oxidation of ethylene glycol. The reaction rate was first order with respect to initial concentration of ethylene glycol. In acidic condition the removal efficiency of ethylene glycol was good, but there was a significant leaching of platinum. Small amount of acetic acid, oxalic acid, masonic acid and formic acid as intermediates were detected during catalytic wet air oxidation of ethylene glycol.

  • PDF

Support Effect of Arc Plasma Deposited Pt Nanoparticles/TiO2 Substrate on Catalytic Activity of CO Oxidation

  • Qadir, Kamran;Kim, Sang Hoon;Kim, Sun Mi;Ha, Heonphil;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.261-261
    • /
    • 2013
  • The smart design of nanocatalysts can improve the catalytic activity of transition metals on reducible oxide supports, such as titania, via strong metal-support interactions. In this work, we investigatedtwo-dimensional Pt nanoparticle/titania catalytic systems under the CO oxidation reaction. Arc plasma deposition (APD) and metal impregnation techniques were employed to achieve Pt nanoparticle deposition on titania supports, which were prepared by multitarget sputtering and sol-gel techniques. APD Pt nanoparticles with an average size of 2.7 nm were deposited on sputtered and sol-gel-prepared titania films to assess the role of the titania support on the catalytic activity of Pt under CO oxidation. In order to study the nature of the dispersed metallic phase and its effect on the activity of the catalytic CO oxidation reaction, Pt nanoparticles were deposited in varying surface coverages on sputtered titania films using arc plasma deposition. Our results show an enhanced activity of Pt nanoparticles when the nanoparticle/titania interfaces are exposed. APD Pt shows superior catalytic activity under CO oxidation, as compared to impregnated Pt nanoparticles, due to the catalytically active nature of the mild surface oxidation and the active Pt metal, suggesting that APD can be used for large-scale synthesis of active metal nanocatalysts.

  • PDF

Characteristics of VOCs Oxidation using Copper Phthalocyanine Catalysts (구리 프탈로시아닌 촉매의 VOCs 산화 특성)

  • 서성규;윤형선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.515-521
    • /
    • 2004
  • The catalytic oxidation of volatile organic compounds (methanol. acetaldehyde) has been characterized using the copper phthalocyanine catalyst in a fixed bed flow reactor under atmospheric pressure. The catalytic activity for pretreatment conditions was examined by this reaction system. The catalytic activity was ordered as follows: metal free-PC<Cu ($\alpha$)-PC<Cu ($\beta$)-PC The formaldehyde, carbon monoxide as a partial oxidation product of methanol and acetaldehyde over Cu ($\alpha$)-PC catalyst were detected and the conversions of methanol and acetaldehyde were accomplished above 95% over Cu ($\alpha$) -PC, Cu ($\beta$) - PC catalyst at 35$0^{\circ}C$. The pretreated metal free -PC, Cu($\alpha$)-PC, Cu($\beta$)-PC catalysts have been characterised by TGA, EA and XRD analysis. The catalytic activity pretreated with air and $CH_3$OH mixture (P-4) or air only (P-5) was very excellent. XRD and EA results showed that Cu($\alpha$)-PC, Cu($\beta$)-PC were destroyed an(1 new metal oxide such as CuO were formed.

Decomposition of Reactive Dyes by Catalytic Wet Air Oxidation Process(2) (촉매 습식산화에 의한 반응성 염료 분해(2))

  • Choi, Jang-Seung;Woo, Sung-Hoon;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2077-2083
    • /
    • 2000
  • For the application of wet air oxidation(WAO) process reactive dyes, remazol blacks has been selected as the subject for this study. The rate of decomposition relating to the reaction temperature and catalyst has been summarized during the catalytic wet air oxidation reaction. When 1.5 gram per liter of platinum is added titanium-dioxide and the partial pressure is adjusted to 6 atmosphere at the reaction temperature exceeding $200^{\circ}C$, more than 95% of the remazol blacks dyes were decomposed. When the reaction temperature was raised to $200^{\circ}C$, $220^{\circ}C$ and $250^{\circ}C$, respectively, for 240 minutes after adding the catalyst, the remaining rate of ultraviolet absorbance had dropped significantly to 18%, 12%, and 4%. At the reaction temperature of $250^{\circ}C$, color removal efficiency was approximately 95% or more after 120 minutes from the beginning of the reaction.

  • PDF

A study on the NO oxidation using dry oxidant produced by the catalytic conversion of H2O2 (H2O2 촉매 전환에 의해 생성된 건식산화제를 이용한 NO 산화에 관한 연구)

  • Jang, Jung Hee;Han, Gi Bo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.100-109
    • /
    • 2016
  • In this study, the NO oxidation using dry oxidant produced by catalytic $H_2O_2$ conversion was conducted. It was shown that Mn-based $Fe_2O_3$ support catalyst has the best performance in the catalytic $H_2O_2$ conversion and its combined-NO oxidation. The reaction characteristics of NO oxidation was investigated by the various operation conditions such as $H_2O_2$ amount, oxidation temperature and space velocity. As a results, the oxidation efficiency of NO greatly depends on the oxidation reaction temperature, $H_2O_2$ amount and space velocity. The performance of NO oxidation was increased with increasing the oxidation temperature and $H_2O_2$ amount. Also, the performance of NO oxidation was decreased with increasing the space velocity.

Support Effect of Catalytic Activity on 3-dimensional Au/Metal Oxide Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan Ho;Naik, B.;Kim, Sang Hoon;Park, Jeong Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.140.2-140.2
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic activity for heterogeneous catalysis. In this work, we report the catalytic activity of $Au/TiO_2$, $Au/Al_2O_3$, and $Au/Al_2O_3-CeO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. These catalytic materials were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and $N_2$-physisorption. Catalytic activity of the materials has measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. Using APD, the catalyst nanoparticles were well dispersed on metal oxide powder with an average particle size (3~10 nm). As for catalytic reactivity, the result shows $Au/Al_2O_3-CeO_2$ nanocatalyst has the highest catalytic activity among three samples in CO oxidation, and $Au/TiO_2$, and $Au/Al_2O_3$ in sequence. We discuss the effects of structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF