• 제목/요약/키워드: Catalytic Material

검색결과 301건 처리시간 0.023초

Synthesis of self-aligned carbon nanotubes on a Ni particles using Chemical Vapour Deposition

  • Park, Gyu-Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.64-64
    • /
    • 2000
  • Since its discovery in 1991, the carbon nanotube has attracted much attention all over the world; and several method have been developed to synthesize carbon nanotubes. According to theoretical calculations, carbon nanotubes have many unique properties, such as high mechanical strength, capillary properties, and remarkable electronical conductivity, all of which suggest a wide range of potential applications in the future. Here we report the synthesis in the catalytic decomposition of acetylene at ~65 $0^{\circ}C$ over Ni deposited on SiO2, For the catalyst preparation, Ni was deposited to the thickness of 100-300A using effusion cell. Different approaches using porous materials and HF or NH3 treated samples have been tried for synthesis of carbon nanotubes. It is decisive step for synthesis of carbon nanotubes to form a round Ni particles. We show that the formation of round Ni particles by heat treatment without any pre-treatment such as chemical etching and observe the similar size of Ni particles and carbon nanotubes. Carbon nanotubes were synthesized by chemial vapour deposition ushin C2H2 gas for source material on Ni coated Si substrate. Ni film gaving 20~90nm thickness was changed into Ni particles with 30~90nm diameter. Heat treatment of Ni fim is a crucial role for the growth of carbon nanotube, High-resolution transmission electron microscopy images show that they are multi-walled nanotube. Raman spectrum shows its peak at 1349cm-1(D band) is much weaker than that at 1573cm-1(G band). We believe that carbon nanotubes contains much less defects. Long carbon nanotubes with length more than several $\mu$m and the carbon particles with round shape were obtained by CVD at ~$650^{\circ}C$ on the Ni droplets. SEM micrograph nanotubes was identified by SEM. Finally, we performed TEM anaylsis on the caron nanotubes to determine whether or not these film structures are truly caron nanotubes, as opposed to carbon fiber-like structures.

  • PDF

결정성에 따른 TiO2 나노입자의 포토루미네선스 영향 (The Effect of Crystallinity on the Photoluminescence of TiO2 Nanoparticles)

  • 한우제;박형호
    • 마이크로전자및패키징학회지
    • /
    • 제26권1호
    • /
    • pp.23-28
    • /
    • 2019
  • 타이타니아 ($TiO_2$)는 독성이 없고 매우 높은 굴절률, 촉매 활성 및 생체 적합성을 지니고 있으며 화학적 안정성이 있고 높은 이방성을 갖는 저렴한 재료로써 다양한 분야에서 각광받고 있는 세라믹 소재이다. 이러한 $TiO_2$를 sol-gel법을 이용하여 나노입자화 하였다. 나노입자 형성중에 pH를 조절하여 $TiO_2$의 결정성을 제어하였다. 합성된 나노입자는 엑스선 회절분석법, 퓨리에 분광기(Fourier transform infrared), 전계방사형 주사전자현미경(field emission scanning electron microscopy)과 포토루미네선스(photoluminescence spectroscopy)를 이용하여 분석하였다. 합성된 $TiO_2$ 나노입자는 5 nm 이하의 크기를 갖는 것을 확인하였다. 나노입자의 결정성이 증가됨에 따라 550 nm 영역의 발광세기가 증가함을 확인하였다. 이러한 결과로 $TiO_2$ 나노입자의 결정성 조절을 통한 발광 특성 조절을 기대할 수 있다.

Biogenic TiO2 나노입자 전처리가 클로로포름 광분해에 미치는 영향 (Effect of Pretreatment of Biogenic Titanium Dioxide on Photocatalytic Transformation of Chloroform)

  • 권수열;;;김영
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.98-103
    • /
    • 2011
  • Photocatalysis using UV light and catalysts is an attractive low temperature and non-energy- intensive method for remediation of a wide range of chemical contaminants like chloroform (CF). Recently development of environmental friendly and sustainable catalytic systems is needed before such catalysts can be routinely applied to large-scale remediation or drinking water treatment. Titanium dioxide is a candidate material, since it is stable, highly reactive, and inexpensive. Diatoms are photosynthetic, single-celled algae that make a microscale silica shell with nano scale features. These diatoms have an ability to biologically fabricate $TiO_2$ nanoparticles into this shell in a process that parallels nanoscale silica mineralization. We cultivated diatoms, metabolically deposited titanium into the shell by using a two-stage photobioreactor and used this biogenic $TiO_2$ to this study. In this study we evaluated how effectively biogenic $TiO_2$ nanoparticles transform CF compared with chemically-synthesized $TiO_2$ nanoparticlesthe and effect of pretreatment of diatom-produced $TiO_2$ nanoparticles on photocatalytic transformation of CF. The rate of CF transformation by diatom-$TiO_2$ particles is a factor of 3 slower than chemically-synthesized one and chloride ion production was also co-related with CF transformation, and 79~91% of CF mineralization was observed in two $TiO_2$ particles. And the period of sonication and mass transfer due to particle size, evaluated by difference of oxygen tention does not affect on the CF transformation. Based on the XRD analysis we conclude that slower CF transformation by diatom-$TiO_2$ might be due to incomplete annealing to the anatase form.

색상 분석법을 이용한 농도 및 촉매반응속도 측정 (Evaluation of Concentration and Reaction Kinetics through Color Analyses)

  • 이은아;장지웅
    • 공업화학
    • /
    • 제33권3호
    • /
    • pp.279-283
    • /
    • 2022
  • 반응물과 생성물이 자외선 및 가시광선 영역에서 빛을 흡수하는 경우 시료의 농도 및 화학반응의 특성을 평가하는데 자외선가시광선분광법을 사용할 수 있다. 하지만 고농도와 높은 반응 온도 조건에서는 자외선가시광선분광법을 사용하는데 한계가 존재한다. 색을 가지고 있는 시료의 촉매 반응을 색상 분석으로 농도 및 조성을 외부에서 수집한 이미지를 분석하여 자외선가시광선분광법에서 동일한 결과를 얻을 수 있다. Resazurin은 촉매 및 환원제에 의해 resorufin으로 환원되며 농도에 따라 적색변광이 일어나며 카메라를 통해 수집하여 분석할 수 있다. 색상 분석을 위한 색공간은 CIE L*a*b*를 사용하였고 소프트웨어를 통해 각각의 색상좌표 값을 추출하고 각 시료의 농도를 분석하였다. 시료의 농도와 촉매 반응에 대해 색공간을 이용한 분석법과 자외선가시광선분광법의 결과와 비교하여 제시된 방법의 유효성을 확인할 수 있다. 더욱이 색상 분석을 통한 농도 분석에서는 자외선가시광선분광법과 다르게 흡수파장이 중복이 있는 경우에도 디콘볼루션 없이 독립적으로 두 물질의 농도 측정이 가능하다.

ZIF-67을 이용한 이기능성 촉매의 최신연구 동향 (Recent Research Trend of Zeolitic Imidazolate Framework-67 for Bifunctional Catalyst)

  • 김상준;조승근;박길령;이은빈;이재민;이정우
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.98-106
    • /
    • 2022
  • Metal-organic frameworks (MOFs) are widely used in various fields because they make it easy to control porous structures according to combinations of metal ions and organic linkers. In addition, ZIF (zeolitic imidazolate framework), a type of MOF, is made up of transition metal ions such as Co2+ or Zn2+ and linkers such as imidazole or imidazole derivatives. ZIF-67, composed of Co2+ and 2-methyl imidazole, exhibits both chemical stability and catalytic activity. Recently, due to increasing need for energy technology and carbon-neutral policies, catalysis applications have attracted tremendous research attention. Moreover, demand is increasing for material development in the electrocatalytic water splitting and metal-air battery fields; there is also a need for bifunctional catalysts capable of both oxidation/reduction reactions. This review summarizes recent progress of bifunctional catalysts for electrocatalytic water splitting and metal-air batteries using ZIF-67. In particular, the field is classified into areas of thermal decomposition, introduction of heterogeneous elements, and complex formation with carbon-based materials or polyacrylonitrile. This review also focuses on synthetic methods and performance evaluation.

Generation of Hydrogen Peroxide by Single-Atom Clusters Pd Anchored on t-BaTiO3 for Piezoelectric Degradation of Tetracycline

  • Xin Ni;Yuan Liang;Quanzi Pan;Hengjie Guo;Kai Chen;Bo Zhang;Shaocong Ni;Bin Sheng;Zeda Meng;Shouqing Liu;Won-Chun Oh
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.447-457
    • /
    • 2023
  • Single-atom Pd clusters anchored on t-BaTiO3 material was synthesized using hydrothermal and ultrasonic methods for the effective piezoelectric catalytic degradation of pollutants using vibration energy. XRD patterns of BaTiO3 loaded with monoatomic Pd were obtained before and after calcining, and showed typical cubic-phase BTO. TEM and HAADF-STEM images indicated single-atom Pd clusters were successfully introduced into the BaTiO3. The piezoelectric current density of the prepared Pd-BaTiO3 binary composite was significantly higher than that of the pristine BaTiO3. Under mechanical vibration, the nanomaterial exhibited a tetracycline decomposition rate of ~95 % within 7 h, which is much higher than the degradation rate of 56.7 % observed with pure BaTiO3. Many of the piezo-induced electrons escaped to the Pd-doped BaTiO3 interface because of Pd's excellent conductivity. Single-atom Pd clusters help promote the separation of the piezo-induced electrons, thereby achieving synergistic catalysis. This work demonstrates the feasibility of combining ultrasonic technology with the piezoelectric effect and provides a promising strategy for the development of ultrasonic and piezoelectric materials.

Increasing the attractiveness of physical education training with the involvement of nanotechnology

  • Jinyan Ge;Yuxin Hong;Rongtian Zeng;Yunbin Li;Mostafa Habibi
    • Advances in concrete construction
    • /
    • 제16권6호
    • /
    • pp.291-302
    • /
    • 2023
  • As the first part of the body that strikes the ground during running, sports shoes are especially important for improving performance and reducing injuries. The use of new nanotechnology materials in the shoe's sole that can affect the movement angle of the foot and the ground reaction forces during running has not been reported yet. It is important to consider the material of the sole of the shoe since it determines the long-term performance of sports shoes, including their comfort while walking, running, and jumping. Running performance can be improved by polymer foam that provides good support with low energy dissipation (low energy dissipation). Running shoes have a midsole made of ethylene propylene copolymer (EPP) foam. The mechanical properties of EPP foam are, however, low. To improve the mechanical performance of EPP, conventional mineral fillers are commonly used, but these fillers sacrifice energy return. In this study, to improve the magnificence of physical education training with nanotechnology, carbon nanotubes (CNTs) derived from recycled plastics were prepared by catalytic chemical vapor deposition and used as nucleating and reinforcing agents. As a result of the results, the physical, mechanical, and dynamic response properties of EPP foam combined with CNT and zinc oxide nanoparticles were significantly improved. When CNT was added to the nanocomposites with a weight percentage of less than 0.5 wt%, the wear resistance, physical properties, dynamic stiffness, compressive strength, and rebound properties of EPP foams were significantly improved.

저온 경화형 초친수성 티타니아 하이브리드 졸의 제조와 친수성 특성 평가에 관한 연구 (Superhydrophilicity of Titania Hybrid Coating Film Imposed by UV Irradiation without Heat-treatment)

  • 김원수;박원규
    • 대한치과기공학회지
    • /
    • 제29권1호
    • /
    • pp.121-131
    • /
    • 2007
  • A preparation process's conditions of aqueous sol which contains anatase-type nano titania particles with photocatalyic properties was established by using Yoldas process, so called, DCS(Destabilization of Colloidal Solution) process in this study. And crystal size change and phase transformation of titania particles in aqueous titania sol depending on reaction conditions was investigated by a light scattering method and XRD analysis of frozen dried powders, respectively. This sol with photo catalytic nano titania particles was used to the following hydrophilic hybrid coating film's fabrication and its properties was evaluated. Subsequently, for coating film using the above mentioned aqueous titania sol, non-aqueous titania sol was prepared without any chemical additives and its time stability according to aging time was investigate. By using the above mentioned aqueous titania sol and non-aqueous sol, a complex oxide coating sol for metal and ceramic substrate and a organic-inorganic hybrid coating sol for polymer substrate was prepared and it's hydrophilicity depending on UV irradiation conditions was evaluated. As a conclusions, the following results were obtained. (1)Aqueous titania sol The average particle size of titania in formed aqueous titania sol was distributed between 20$\sim$90nm range depending on reaction conditions. And the crystal phase of titania powders obtained by frozen drying method was changed from amorphous state to anatase and subsequently transformed to rutile crystal phase and it is attributed to concentration gradient in aqueous sol. (2)Non-aqueous titania sol Non-aqueous titania sol was prepared using methanol as a solvent and a little distilled water for hydrolysis and nitric acid as a catalyst were used. The obtained non-aqueous titania sol was stable at room temperature for 20 days. Additionally, non-aqueous titania sol with addition of chealating reagent such as acethylaceton and ethylene glycol prolonged the stability of sol by six months. (3)Complex sol and hybrid sol with super hydrophilicity The above mentioned aqueous titania sol as a main photocataylic component and non-aqueous titania sol as a binder for coating process was used to prepare a complex sol used for metal, ceramic and wood material substrate and also to prepare the organic-inorganic hybrid sol for polymer substrate such as polycarbonate and polyethylene, in which process APMS(3-Aminopropyltrimethoxysilane), GPTS(3-Glycidoxypropyl-trimethoxysilane) as a hydrophilic silane compound and HEMA(2-Hydroxyethyl methacrylate) as a forming network in hybrid coating film were used. The hybrid coating film such as prepared through this process showed a superhydrophilicity below 1$10^{\circ}$ depending on processing conditions and a pencil's hardness over 6 H.

  • PDF

개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법 (New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect)

  • 응웬 딩 궁 디엔;조광연;오원춘
    • 공업화학
    • /
    • 제28권6호
    • /
    • pp.705-713
    • /
    • 2017
  • 독창적 물질인 $Bi_2WO_6-GO-TiO_2$ 나노복합체를 쉬운 수열법에 의해 성공적으로 합성하였다. 수열반응을 하는 동안, 그래핀 시트 위에 $Bi_2WO_6$$TiO_2$를 도포하였다. 합성한 $Bi_2WO_6-GO-TiO_2$ 복합체형 광촉매는 X-선 회절법(XRD), 주사전자현미경(SEM), 에너지 분산 X-선(EDX) 분석, 투과전자현미경(TEM), 라만분광법, UV-Vis 확산반사 분광법(UV-vis-DRS), 및 X-선 광전자분광기(XPS)에 의하여 특성화하였다. $Bi_2WO_6$ 나노입자는 불규칙한 dark-square block 나노 플페이트 형상을 보였으며, 이산화티탄 나노입자는 퀜텀 도트 사이즈로 그래핀 시트 위 표면을 덮고 있었다. 로다민 비의 분해는 농도감소의 측정과 함께 UV 분광법에 의하여 관찰하였다. 합성된 물질의 광촉매 반응은 Langmuir-Hinshelwood 모델과 띠 이론으로 설명하였다.

Pt/SBT/Si, Pt/SBT/Pt 강유전체 게이트 구조에서 수소 열화 현상 및 Ir 게이트 전극에 의한 열화 방지 방법 (Hydrogen Degradation of Pt/SBT/Si, Pt/SBT/Pt Ferroelectric Gate Structures and Degradation Resistance of Ir Gate Electrode)

  • 박전웅;김익수;김성일;김용태;성만영
    • 마이크로전자및패키징학회지
    • /
    • 제10권2호
    • /
    • pp.49-54
    • /
    • 2003
  • 본 연구에서는 Pt/SrBi$_2$Ta$_2$O$_{9}$(SBT)/Si (MFS)와 Pt/SBT/Pt (MFM) 각각의 구조에서 수소 열처리에 의한 SBT박막의 물리, 전기적 영향에 대해 연구하였다. SBT 박막의 미세구조 및 전기적 특성은 수소 열처리 후에 SBT 박막의 손상으로 열화된다. 특히, Pt 전극에 의한 SBT 박막의 열화 현상을 연구하기 위해 각각 Si 와 Pt 위에 SBT 를 증착하여 같은 조건으로 열처리를 하였다. XRD, XPS, P-V, C-V 측정을 통해 Pt 전극 없이 SBT자체로도 수소 열처리 후에 열화 됨을 확인 할 수 있었다. 또한, 수소 열화현상이라고 하는 촉매 반응으로 SBT 열화 현상이 Pt로 가속화되었다. 이러한 현상을 방지하기 위해서 새로운 Ir 전극을 제안하여 $Ir/IrO_2/SBT/IrO_2$ 구조에서의 수소 열처리 전후 및 회복 열처리를 통해 SBT 박막의 전기적 특성을 연구하였다. P-V측정을 통해 SBT박막을 이용한 MFM구조에서 Ir이 열화 방지용 전극 물질로의 활용 가능성을 확인하였다.

  • PDF