• Title/Summary/Keyword: Catalytic Effect

Search Result 826, Processing Time 0.033 seconds

Facile Preparation of ZnO Nanocatalysts for Ozonation of Phenol and Effects of Calcination Temperatures

  • Dong, Yuming;Zhao, Hui;Wang, Zhiliang;Wang, Guangli;He, Aizhen;Jiang, Pingping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.215-220
    • /
    • 2012
  • ZnO nanoparticles were synthesized through a facile route and were used as ozonation catalysts. With the increase of calcination temperature ($150-300^{\circ}C$), surface hydroxyl groups and catalytic efficiency of asobtained ZnO decreased remarkably, and the ZnO obtained at $150^{\circ}C$ showed the best catalytic activity. Compared with ozonation alone, the degradation efficiency of phenol increased above 50% due to the catalysis of ZnO-150. In the reaction temperatures range from $5^{\circ}C$ to $35^{\circ}C$, ZnO nanocatalyst revealed remarkable catalytic properties, and the catalytic effect of ZnO was better at lower temperature. Through the effect of tertbutanol on degradation of phenol and the catalytic properties of ZnO on degradation of nitrobenzene, it was proposed that the degradation of phenol was ascribed to the direct oxidation by ozone molecules based on solidliquid interface reaction.

A Study on the Fluid Flow Characteristic in Catalytic Converter for Various Inlet and Outlet Header Shapes (입.출구 형상변화에 따른 촉매변환기 내의 유동특성에 관한 연구)

  • Lee, Eun-Ho;Lee, Chul-Ku;Yoo, Jai-Suk;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.187-194
    • /
    • 1999
  • In the design of catalytic converter, velocity distribution is more important than pressure drop because monolith pressure drop is about 80% of overall pressure drop. For the catalytic converter with single diffuser, pressure drop is decreased as the angle of diffuser decrease, but when the angle is below 18$^{\circ}$, the effect is almost negligible . For the catalytic converter with double diffuser, variation of the angle of the first diffuser shows the same trend as the pressure drop while the shape of diffuser gives little influence on that The outlet shape gives negligible effect on the pressure drop and velocity . distribution . Results show that recirculation region of commercial model is aoubt 30% of the total area in the front of monolith. For the catalytic converter with Model 11 that was presented in the study, recirculation region was not detected more uniform velocity distribution was obtained, and pressure drop was also decreased.

  • PDF

A Study on the Decomposition of Dissolved Ozone and Phenol using Ozone/Activated Carbon Process (오존/활성탄 공정을 이용한 용존 오존 및 페놀의 분해에 관한 연구)

  • Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.490-495
    • /
    • 2012
  • The catalytic effect induced by activated carbon (AC) was evaluated during the phenol treatment using an ozone/AC ($O_{3}/AC$) process. In the case of the addition of AC to the ozone only process, the decomposition efficiency of dissolved ozone and phenol increased with increasing the amount of AC input. It was that the OH radical generated from the decomposition of dissolved ozone by AC had an effect on the removal of phenol. It was shown as the catalytic effect of AC ([$\Delta$phenol]/$[{\Delta}O_{3}]_{AC}$) in this study. The maximum catalytic effect was approximately 2.13 under 10~40 g/L of AC input. It approached to the maximum catalytic effect after 40 min of reaction with 10 and 20 g/L of AC input, while the reaction time reached to the maximum catalytic effect under 30 and 40 g/L of AC input was approximately 20 min. Moreover, the removal ratios of total organic carbon (TOC) for ozone only process and ozone/AC process were 0.23 and 0.63 respectively.

Catalytic Combustion of Methane over Perovskite-Type Oxides

  • Hong, Seong-Soo;Sun, Chang-Bong;Lee, Gun-Dae;Ju, Chang-Sik;Lee, Min-Gyu
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2000
  • Methane combustion over perovskite-type oxides prepared using the malic acid method was investigated. To enhance the catalytic activity, the perovskite oxides were modified by the substitution of metal into their A or B site. In addition, the reaction conditions, such as the temperature, space velocity, and partial pressure of the methane were varied to understand their effect on the catalytic performance. With the LaCoO3-type catalyst, the partial substitution of Sr or Ba into site A enhanced the catalytic activity in the methane combustion. With the LaBO3(B=Co, Fe, Mn, Cu)-type catalyst, the catalytic activities were exhibited in the order of Co>Fe Mn>Cu. Futhermore, the partial substitution of Co into site B enhanced the catalytic activity, whereas an excess amount of Co decreased the activity. The surface area and catalytic activity of the perovskite catalysts prepared using the malic acid method showed higher values than those prepared using the solid reaction method. The catalytic activity was enhanced with decreased methane concentration and with a decrease in the space velocity.

  • PDF

Graphitization of Petroleum Cokes by Aluminum Catalyst (Aluminum 촉매에 의한 석유 Cokes의 흑연화)

  • 염희남;김경자;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.677-684
    • /
    • 1995
  • The effect of catalytic graphitization of petroleum cokes by the addition of aluminum were investigated. The degree of graphitization carbon body only fired at 230$0^{\circ}C$ was 0.5. But when the aluminum additive was added, the degree of graphitization was increased to 0.93. And Ts-effect was appeared as the catalytic effect. This effect was occurred by the formation-decomposition of aluminum carbide through the reaction of aluminum and cokes.

  • PDF

Design Criterion for the Size of Micro-scale Pt-catalytic Combustor in Respect of Heat Release Rate (열 방출률에 대한 마이크로 백금 촉매 연소기의 치수 설계 기준)

  • Lee, Gwang Goo;Suzuki, Yuji
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • Design criterion for the size of micro Pt-catalytic combustor is investigated in terms of heat release rate. One-dimensional plug flow model is applied to determine the surface reaction constants using the experimental data at stoichiometric butane-air mixture. With these reaction constants, the mass fraction of butane and heat release rate predicted by the plug flow model are in good agreement with the experimental data at the combustor exit. The relationship between the size of micro catalytic combustor and mixture flowrate is introduced in the form of product of two terms-the effect of fuel conversion efficiency, and the effect of chemical reaction rate and mass transfer rate.

Study on the Catalytic Properties of Copper Oxide Nanoparticles Synthesized by Levitational Gas Condensation (LGC) Method

  • Uhm, Y.R.;Lee, M.K.;Rhee, C.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.99-102
    • /
    • 2007
  • The Cu oxide nano powders were synthesized by levitational gas condensation (LGC) method and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4-hydroquinone (TMHQ) and catalase activity were studied. The nano powders consist of mainly $Cu_2O$. The catalytic effect which was clarified by the oxidation of TMHQ and the activity of catalase, was found to depend on the amount of $Cu_2O$ phase and the particle size.

Removing Volatile Organic Compound using the Waste Industrial Catalyst - The effect of pretreatment on Pt-based catalyst (폐 산업용 촉매를 이용한 휘발성유기화합물의 제거 -Pt 계 촉매의 전처리 효과-)

  • 김상채;서성규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.205-212
    • /
    • 2002
  • The catalytic combustion of benzene, toluene and xylene over Pt-based catalyst was investigated in a fixed bed flow reactor system with atmospheric pressure to recycle the waste industrial catalyst for the processes of removing volatile organic compounds. According to the pretreatment condition, the properties of the waste Pt-based catalyst were characterized by XRD (X-ray diffraction) and BET (Brunauer-Emmett-Toller). In the carte of air pretreatment, 20$0^{\circ}C$ was found to be optimal, and increasing pretreatment temperature resulted in the reduction of the catalytic activity. When Pt-based catalyst pretreated at 20$0^{\circ}C$ by alto was retreated by hydrogen, the catalytic activity increased by increasing treatment temperature. In the case of HNO$_3$aqueous solution pretreatment, the catalytic activity decreased by increasing the concentration of HNO$_3$aqueous solution. The catalytic activity was seen to observe the following sequence : benzene > toluene > xylene.

Theoretical Analysis on Bifurcation Behavior of Catalytic Surface Reaction on Nonadiabatic Stagnation Plane (비단열 정체면에서 촉매 표면반응의 천이 거동에 대한 이론적 해석)

  • Lee, Su- Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.697-704
    • /
    • 2004
  • Bifurcation behavior of ignition and extinction of catalytic reaction is theoretically investigated in a stagnation-point flow. Considering that reaction takes place only on the catalytic surface, where conductive heat losses are allowed to occur, activation energy asymptotics with a overall one-step Arrhenius-type catalytic reaction is employed. For the cases with and without the limiting reactant consumption, the analysis provides explicit expressions, which indicate the possibility of multiple steady-state solution branches. The difference between the solutions with and without reactant consumption is in the existence of an upper solution branch, and the neglect of reactant consumption is inappropriate for determining extinction conditions. For larger values of reactant consumption, the solution response is all monotone, suggesting that multiple solutions are not possible. It is shown that bifurcation Damkohler numbers increase (decrease) with increasing of conductive heat loss (gain) on the catalytic surface, which means that smaller (larger) values of the strain rate allow the surface reaction to tolerate larger heat losses (gains). Lewis number of the limiting reactant can also significantly affect bifurcation behavior in a similar way to the effect of heat loss.

The Roles of Tryptophan and Histidine Residues in the Catalytic Activities $\beta$-Cyclodextrin Glucanotransferase from Bacillus firmus var. alkalophilus

  • Shin, Hyun-Dong;Kim, Chan;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1999
  • In order to investigate the critical amino acid residues involved in the catalytic activities of $\beta$-cyclodextrin glucanotransferase ($\beta$-CGTase) excreted by Bacillus firmus var. alkalophilus, the amino acid residues in $\beta$-CGTase were modified by various site-specific amino acid modifying reagents. The cyclizing and amylolytic activities of $\beta$-CGTase were all seriously reduced after treatment with Woodward's reagent K (WRK) modifying aspartic/glutamic acid, N-bromosuccinimde (NBS) modifying tryptophan, and diethylpyrocarbonate (DEPC) modifying histidine residues. The roles of tryptophan and histidine residues in $\beta$-CGTase were further investigated by measuring the protection effect of various substrates during chemical modification, comparing protein mobility in native and affinity polyacrylamide gel electrophoresis containing soluble starch, and comparing the $K_m$ and $V_{max}$ values of native and modified enzymes. Tryptophan residues were identified as affecting substrate-binding ability rather than influencing catalytic activities. On the other hand, histidine residues influenced catalytic ability rather than substrate-binding ability, plus histidine modification had an effect on shifting the optimum pH and pH stability.

  • PDF