• 제목/요약/키워드: Catalyst layer

검색결과 357건 처리시간 0.024초

Experimental Investigation of the Effect of Composition on the Performance and Characteristics of PEM Fuel Cell Catalyst Layers

  • Baik, Jung-Shik;Seong, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.157-160
    • /
    • 2007
  • The catalyst layer of a proton exchange membrane (PEM) fuel cell is a mixture of polymer, carbon, and platinum. The characteristics of the catalyst layer play critical role in determining the performance of the PEM fuel cell. This research investigates the role of catalyst layer composition using a Central Composite Design (CCD) experiment with two factors which are Nafion content and carbon loading while the platinum catalyst surface area is held constant. For each catalyst layer composition, polarization curves are measured to evaluate cell performance at common operating conditions, Electrochemical Impedance Spectroscopy (EIS), and Cyclic Voltammetry (CV) are then applied to investigate the cause of the observed variations in performance. The results show that both Nafion and carbon content significantly affect MEA performance. The ohmic resistance and active catalyst area of the cell do not correlate with catalyst layer composition, and observed variations in the cell resistance and active catalyst area produced changes in performance that were not significant relative to compositions of catalyst layers.

  • PDF

Effect of organic solvents on catalyst structure of PEM fuel cell electrode fabricated via electrospray deposition

  • Koh, Bum-Soo;Yi, Sung-Chul
    • Journal of Ceramic Processing Research
    • /
    • 제18권11호
    • /
    • pp.810-814
    • /
    • 2017
  • Proton exchange membrane fuel cells (PEMFCs) are some of the most efficient electrochemical energy sources for transportation applications because of their clean, green, and high efficiency characteristics. The optimization of catalyst layer morphology is considered a feasible approach to achieve high performance of PEMFC membrane electrode assembly (MEA). In this work, we studied the effect of the solvent on the catalyst layer of PEMFC MEAs fabricated using the electrostatic spray deposition method. The catalyst ink comprised of Pt/C, a Nafion ionomer, and a solvent. Two types of solvent were used: isopropyl alcohol (IPA) and dimethylformamide (DMF). Compared with the catalyst layer prepared using IPA-based ink, the catalyst layer prepared with DMF-based ink had a dense structure because the DMF dispersed the Pt/C-Nafion agglomerates smaller and more homogeneously. The size distribution of the agglomerates in catalyst ink was confirmed through Dynamic Light Scattering (DLS) and the microstructure of the catalyst layer was compared using field emission scanning electron microscopy (FE-SEM). In addition, the electrochemical investigation was performed to evaluate the solvent effect on the fuel cell performance. The catalyst layer prepared with DMF-based ink significantly enhanced the cell performance (1.2 A cm-2 at 0.5 V) compared with that fabricated using IPA-based ink (0.5 A cm-2 at 0.5 V) due to the better dispersion and uniform agglomeration on the catalyst layer.

Atomic Layer Deposition-incorporated Catalyst Deposition for the Vertical Integration of Carbon Nanotubes

  • Jung, Sung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.688-692
    • /
    • 2011
  • Carbon nanotubes (CNTs) are vertically grown inside high-aspect-ratio vertical pores of anodized aluminum oxide. A CNT catalyst layer is introduced by atomic layer deposition to the bottom of the pores, after which the CNTs are successfully grown from the layer using chemical vapor deposition. The CNTs formed a complete vertical conductive path. The conductivity of the CNT-vertical path is also measured and discussed. The present atomic layer deposition-incorporated catalyst deposition is predicted to enable the integration of CNTs with various challenging configurations, including high-aspect-ratio vertical channels or vertical interconnects.

고분자전해질용 연료전지의 전극 촉매중 특성에 관한 연구 (Studies on the Characteristics of the Catalyst Layer of the PEMFC Electrode)

  • ;임재욱;유형균;류호진
    • 전기화학회지
    • /
    • 제6권1호
    • /
    • pp.65-67
    • /
    • 2003
  • The present paper highlights on the need to understand the correlation of the characteristics of the catalyst layer with the performance of the polymer electrolyte membrane fuel cell (PEMFC). This paper deals with the correlation of the platinum loading in the catalyst layer and the performance of the polymer electrolyte membrane fuel cell and also the correlation of the required hydrophilicity/hydrophobicity in the catalyst layer to get the optimum performance under given operating conditions.

The effect of Nafion$^{(R)}$ ionomer content/distribution and relative humidities on PEMFC performances of MEAs prepared by a CCM spraying method

  • 김근호;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.87.1-87.1
    • /
    • 2011
  • For commercial applications, MEA development must be optimized in order to achieve high performance and low cost. There are many factors that affect the performance of MEA. Especially, the optimization of the method for preparing catalyst layer has great effect on the performance of MEA. Various methods have been used to prepare the catalyst layer of MEA. Among them, spraying method has a merit in that catalysis lay can be prepared with very flexible changes in catalyst layer as well as in the solvent composition of catalyst ink. In addition, in order to reduce the time required for manufacturing catalyst layer, an effort has been made to change the nozzle size and injection pressure of spray system. Further, the operation condition of spray system was changed in various ways in an effort to prepare optimum catalyst layer of MEA. Having optimized the operation condition of spraying system, comprehensive and diverse experiments were carried out concerning various factors that affect the performance of MEA. The present research report describes the results of more sub-categorized and more detailed experiments about the important factors (Nafion$^{(R)}$ ionomer, Relative humidity) which have been shown in previous experiments to exert greater effect on the performance of MEA.

  • PDF

이중층 워시코트 Rh-Pd-Pt 삼원촉매의 열적 열하에 따른 반응 특성 (Characteristics of Rh- Pd- Pt Three-Way Catalysts with Double-Layer Washcoat on the Hydrothermal Aging)

  • 최병철;정종우;손건석;정명근
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.8-16
    • /
    • 2006
  • The research was conducted to characterize of Rh-Pd-Pt TWC with a double-layer washcoat for gasoline vehicle. The physical characteristics on surface of catalyst were inspected by BET, SEM and TEM. The characteristics of catalytic reaction were examined by the TPD/TPR and CO-pulse chemisorption. The catalyst $6Hx(0.35\times11\times3)$ showed superior conversion performance after hydrothermal aging process, which was due to small difference of the surface area between. the fresh and the aged catalyst. The CO-chemisorption and surface area were superior in the 600 cpsi catalyst than other catalysts, this catalyst also shown the higher conversion efficiency of the exhaust emissions. From the TPR test, the conversion performance of the aged catalyst was decreased by the agglomeration and sintering of the PM and metal oxides. From the TPD result, it was found that the NO chemisorption was happed on the bottom-layer washcoat with Pd, and the NO chemisorption was re-happened on the upper-layer washcoat with Pt and Rh in the desorption process.

백금담지 촉매의 직접메탄올 연료전지 환원전극 적용 (Application of Pt/C (60 wt.%) on electrode catalyst layer of direct methanol fuel cell)

  • 조용훈;조윤환;박현서;정남기;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.188-190
    • /
    • 2007
  • The MEA with the catalyst layer containing PtRu black and 60 wt. %Pt/C as their anode and cathode catalysts. For find to effect of carbon support, the MEA with platinum black for cathode catalyst was fabricated. The performance of the MEA with the catalyst layer containing (PtRu black:60 wt.% Pt/C) as their anode and cathode catalyst has shown competitively higher value than the performance of the MEA with the catalyst layer containing (PtRu black:Pt black) as their anode and cathode catalyst.

  • PDF

고분자 전해질 막 연료전지의 촉매층 내의 나피온 아이오노머양에 따른 단위 셀의 전기화학적 특성 연구 (Nafion Ionomer Content in Catalyst Layer for PEMFC Nafion Ionomer Content in Catalyst Layer for PEMFC)

  • 안경용;양철남;이수
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.540-546
    • /
    • 2010
  • In order to confirm the effect of Nafion ionomer content in catalyst layer on the performance of PEMFC, we have fabricated several electrodes which were prepared by varying the quantity of Nafion ionomer from 24 wt.% to 39 wt.% in catalyst layer. The effect of Nafion ionomer of each electrode was evaluated with cyclic voltammetry measurement. In addition, cell performance was obtained through single cell test using hydrogen and air. The Pt utilization and performance of single cell were changed by addition of Nafion ionomer to the electrode. Single cell fabricated with 33 wt.% of Nafion ionomer in catalyst layer showed the maximum Pt utilization and performance.

Investigation of carbon nanotube growth termination mechanism by in-situ transmission electron microscopy approaches

  • Kim, Seung Min;Jeong, Seojeong;Kim, Hwan Chul
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.228-233
    • /
    • 2013
  • In this work, we report in-situ observations of changes in catalyst morphology, and of growth termination of individual carbon nanotubes (CNTs), by complete loss of the catalyst particle attached to it. The observations strongly support the growth-termination mechanism of CNT forests or carpets by dynamic morphological evolution of catalyst particles induced by Ostwald ripening, and sub-surface diffusion. We show that in the tip-growth mode, as well as in the base-growth mode, the growth termination of CNT by dissolution of catalyst particles is plausible. This may allow the growth termination mechanism by evolution of catalyst morphology to be applicable to not only CNT forest growth, but also to other growth methods (for example, floating-catalyst chemical vapor deposition), which do not use any supporting layer or substrate beneath a catalyst layer.

Direct Growth of Graphene on Insulating Substrate by Laminated (Au/Ni) Catalyst Layer

  • Ko, Yong Hun;Kim, Yooseok;Jung, Daesung;Park, Seung Ho;Kim, Ji Sun;Shim, Jini;Yun, Hyeju;Song, Wooseok;Park, Chong-Yun
    • Applied Science and Convergence Technology
    • /
    • 제24권4호
    • /
    • pp.117-124
    • /
    • 2015
  • A direct growth method of graphene on insulating substrate without catalyst etching and transfer process was developed using Au/Ni/a-C catalyst system. During the growth process, behavior of the Au/Ni catalyst was investigated using EDX, XPS, SEM, and Raman spectroscopy. The Au/Ni catalyst layer was evaporated during growth process of graphene. The graphene film was composed mono-layer flakes. The transmittance of the graphene film was ~80.6%.