• Title/Summary/Keyword: Catalyst durability

Search Result 148, Processing Time 0.022 seconds

Synthesis and Durability of Carbon-Supported Catalysts for PEMFC (내구성 향상을 위한 연료전지 촉매 개발)

  • YI, MI HYE;CHOI, JIN SUNG;RHO, BUMWOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.318-323
    • /
    • 2015
  • For commercialization of fuel cell electric vehicles, one of the key objectives is to improve durability of MEA and electrocatalysts. Regarding electrocatalysts, the major issue is to reduce carbon corrosion and dissolution of Pt caused by harsh conditions, for example, SU/SD (Start-up/Shut-down). In this research, OER (Oxygen Evolution Reaction) catalyst has been developed improvement of durability. A modified polyol process is developed by controlling the pH of the solvent to synthesize the PtIr nanocatalysts on carbon supports. Each performance of the MEAs applying PtIr and Pt are equivalent because PtIrnanocatalysts have both ORR and OER activity. Breadboard test for catalyst durability in harsh conditions and high potentialsis found that the MEA applying PtIrnanocatalysts durability is improved more than the MEA applying Pt nanocatalysts.

Identification of Thermal Flow Boundary Conditions for Three-way Catalytic Converter Using Optimization Techniques (최적화 기법을 이용한 삼원촉매변환기의 열유동 경계조건의 동정)

  • Baek, Seok-Heum;Choi, Hyun-Jin;Kim, Kwang-Hong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3125-3134
    • /
    • 2010
  • Three-way catalyst durability in the Korea requires 5 years/80,000km in 1988 but require 10 years/120,000km after 2002. Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but don't satisfy thermal durability. Three-way catalyst maintains high temperature in interior domain but maintain low temperature on outside surface. This study evaluated thermal durability of three-way catalyst by thermal flow and structure analysis and the procedure is as followings. Thermal flow parameters ranges were determined by vehicle test and basic thermal flow analysis. Response surface for rear catalyst temperature was constructed using the design of experiment (DOE) for thermal flow parameters. Thermal flow parameters for rear catalyst temperature in vehicles examination were predicted by desirability function. Temperature distribution of three-way catalyst was estimated by thermal flow analysis for predicted thermal flow parameters.

Hybrid PtCo Alloy Nanocatalysts Encapsulated by Porous Carbon Layers for Oxygen Reduction Reactions (다공성 탄소층이 코팅된 하이브리드 표면 구조를 갖는 산소 환원 반응용 PtCo 합금 나노 촉매)

  • Jang, Jeonghee;Sharma, Monika;Sung, Hukwang;Kim, Sunpyo;Jung, Namgee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.646-652
    • /
    • 2018
  • During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, $O_2$ can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.

The Effect of Additive Catalyst according to Thermal Aging of Vanadia SCR (Vanadia SCR의 열적 열화에 따른 조촉매의 영향)

  • Seo, Choong-Kil
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.14-19
    • /
    • 2014
  • The purpose of the study is to investigate the effect of additive catalyst according to the thermal aging of vanadia SCR catalysts. At a fresh condition, the $3V_2O_5-5WO_5-92TiO_2$ SCR showed the highest NOx conversion rate of about 30%, the performance of 5 kinds of SCR to which additive catalysts were added was not improved due to the insignificant effect of acid site control. For catalysts aged for 12h at $700^{\circ}C$, the SCR to which 3wt% Zeolite was added decreased in NOx conversion rate by 2.5% on average compared to the fresh SCR, it showed higher thermal durability than other additive catalyst. For 3Zeolite with high performance of NOx conversion rate during thermal aging, the Zeolite with stronger durability at a high temperature than other 5 kinds of SCR catalysts decreased the sintering of catalysts.

Hydrolysis Reaction of NaBH4 Using Activated Cabon Supported Co-B/C, Co-P-B/C Catalyst (활성탄 담지 Co-B/C, Co-P-B/C 촉매를 이용한 NaBH4 가수분해 반응)

  • Oh, Sohyeong;Kim, Youkyum;Bae, Hyojune;Kim, Dongho;Byun, Younghwan;Ahn, Ho-Geun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.641-646
    • /
    • 2018
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using activated carbon supported Co-B/C, Co-P-B/C catalyst were studied. BET surface area of catalyst, yield of hydrogen, effect of $NaBH_4$ concentration and durability of catalyst were measured. The BET surface area of carbon supported catalyst was over $500m^2/g$ and this value was 2~3 times higher than that of unsupported catalyst. Hydrogen generation of activated carbon supported catalyst was more stable than that of unsupported catalyst. The activation energy of Co-P-B/C catalyst was 59.4 kJ/mol in 20 wt% $NaBH_4$ and 14% lower than that of Co-P-B/FeCrAlloy catalyst. Catalyst loss on activated carbon supported catalyst was reduced to about 1/3~1/2 compared with unsupported catalyst, therefore durability was improved by supporting catalyst on activated carbon.

Effect of Pt-Co/C Cathode Catalyst on Electrochemical Durability of Membrane in PEMFC (PEMFC에서 Pt-Co/C Cathode 촉매가 고분자막의 전기화학적 내구성에 미치는 영향)

  • Sohyeong Oh;Dong Geun Yoo;Myoung Hwan Kim;Ji Young Park;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.189-195
    • /
    • 2023
  • As a PEMFC (Polymer Exchange Membrane Fuel Cell) cathode catalyst, Pt-Co/C has recently been widely used because of its improved durability. In a fuel cell, electrodes and electrolytes have a close influence on each other in terms of performance and durability. The effect on the electrochemical durability of the electrolyte membrane when Pt-Co/C was replaced in the Pt/C electrode catalyst was studied. The durability of Pt-Co/C MEA (Membrane Electrode Assembly) was higher than that of Pt/C MEA in the electrochemical accelerated degradation process of PEMFC membrane. As a result of analyzing the FER (Fluorine Emission Rate) and hydrogen permeability, it was shown that the degradation rate of the membrane of Pt-Co/C MEA was lower than that of Pt/C MEA. In the OCV (Open Circuit Voltage) holding process, the rate of decrease of the active area of the Pt-Co/C electrode was lower than that of the Pt/C electrode, and the amount of Pt deposited on the membrane was smaller in Pt-Co/C MEA than in Pt/C MEA. Pt inside the polymer membrane deteriorates the membrane by generating radicals, so the degradation rate of the membrane of Pt/C MEA with a high Pt deposition rate was higher than Pt-Co/C MEA. When the Pt-Co/C catalyst was used, the electrode durability was improved, and the amount of Pt deposited on the membrane was also reduced, thereby improving the electrochemical durability of the membrane.

ADDITIVE CATALYSTS FOR AN AUTOMOTIVE PHOTOCATALYST SYSTEM

  • Son, G.S.;Ko, S.H.;Lee, K.Y.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2000
  • As a promising catalyst reducing cold start emissions of automobiles, a photocatalyst systems has been studied. Since the photocatalyst is only activated by UV wavelength light, it needs no heat energy like a conventional TWC, therefore no light-off time. However, as a cold temperature catalyst to treat cold start emissions of a vehicle, previous studies on characteristic of photocatalyst have room for improvement in terms of performance and durability investigated from the viewpoints of performance and durability improvement. Eleven different coating samples were prepared with the combination of six kinds of additives and two kinds of photocatalyst materials. Then these samples were aged with a hydrothermal aging process. The performance of these samples was measured on a model gas apparatus with simulated exhaust gases. The durability was also analyzed with X-ray diffraction meter.

  • PDF

Highly Durable Pt catalyst Supported on the Hybrid Carbon Materials for Polymer Electrolyte Membrane Fuel Cell (탄소계 복합담지체에 담지된 고내구성 고분자전해질 연료전지용 백금촉매)

  • Park, Hyang Jin;Hur, Seung Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • A Pt catalyst ($Pt/G_xC_y$) supported on the hybrid supporting materials composed of graphene oxide (GO) and carbon black (C) was fabricated using polyol method to improve the durability of electrocatalysts. The electrochemical performances measured by cyclic voltammograms using three-electrode system revealed that the properly designed $Pt/G_xC_y$ catalyst exhibited higher durability than that of Pt/C catalyst without sacrificing an electrocatalytic acivity. In the oxygen reduction reaction (ORR) performed in acid solution with the rotating disk electrode, the $Pt/G_xC_y$ catalyst showed greater mass and area-specific activity than those of Pt/C catalyst.

REACTIVITY AND DURABILITY OF V2O5 CATALYSTS SUPPORTED ON SULFATED TIO2 FOR SELECTIVE REDUCTION OF NO BY NH3

  • Choo, Soo-Tae;Nam, Chang-Mo
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • The selective catalytic experiments using both sulfated/sulfur-free titania and V2O5/TiO2 catalysts have been conducted for NO reduction by NH3 in a packed-bed, down-flow reactor. The sulfated and vanadia loaded titania exhibited higher activity for NO removal than the sulfur-free catalysts, where > 90% NO removal was achieved over the sulfated V2O5/TiO2 catalyst between 280∼500 C. The surface structure of vanadia species on the catalyst surface played a critical role in the high performance of catalysts in which the existence of monomeric/polymeric vanadate is revealed by Raman spectra studies. Water vapor and SO2 were added to the reacting system for the catalyst deactivation tests. At higher temperatures (T ≥ 350 C), little deactivation was observed over the sulfated V2O5/TiO2 catalysts, showing good durability against SO2 and water vapor, which is compared with deactivation at lower temperatures.

Treatment and Characterization of Polyethylene Terephthalate Fibers with Silicone Rubber Adhesive for Heat-Resistant Adhesion (실리콘 고무와 내열접착 향상을 위한 Polyethylene Terephthalate 섬유 접착층의 제조 및 특성)

  • Kim, Jihyo;Lee, Sangoh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.107-117
    • /
    • 2019
  • In case of pure rubber materials, the initial quality of the rubber materials would be excellent, however, the durability against external impact might be poor. In order to overcome the relatively low durability, textile cord could be employed with silicone rubber. We have studied the improvement of heat-resistant adhesion properties of silicone adhesives between silicone rubber and PET fibers by applying various conditions including dip solution recipe. The silicone rubber used was a platinum catalyst curing type and platinum catalyst type silicone adhesive was used as an adhesive to obtain an optimum adhesive force. Furthermore, the bonding mechanism between silicone and PET fiber was established.