DOI QR코드

DOI QR Code

Highly Durable Pt catalyst Supported on the Hybrid Carbon Materials for Polymer Electrolyte Membrane Fuel Cell

탄소계 복합담지체에 담지된 고내구성 고분자전해질 연료전지용 백금촉매

  • 박향진 (울산대학교 화학공학부) ;
  • 허승현 (울산대학교 화학공학부)
  • Received : 2014.07.08
  • Accepted : 2014.08.18
  • Published : 2014.08.31

Abstract

A Pt catalyst ($Pt/G_xC_y$) supported on the hybrid supporting materials composed of graphene oxide (GO) and carbon black (C) was fabricated using polyol method to improve the durability of electrocatalysts. The electrochemical performances measured by cyclic voltammograms using three-electrode system revealed that the properly designed $Pt/G_xC_y$ catalyst exhibited higher durability than that of Pt/C catalyst without sacrificing an electrocatalytic acivity. In the oxygen reduction reaction (ORR) performed in acid solution with the rotating disk electrode, the $Pt/G_xC_y$ catalyst showed greater mass and area-specific activity than those of Pt/C catalyst.

본 연구에서는 산화그래핀과 카본블랙의 혼합담체를 이용하여 내구성이 향상된 백금촉매를 폴리올법으로 제조하였다. 삼전극 순환전압전류법을 이용한 전기화학성능 측정결과 적절한 비율로 조절된 혼합담지체에 백금을 담지시켰을 경우 초기 성능 감소없이 장기내구성이 향상되는 것으로 나타났다. 또한 회전원판전극을 이용하여 산소환원반응을 수행한 결과 혼합담체에 담지된 백금촉매가 카본블랙 단일담체에 담지된 백금촉매보다 우수한 고유활성값을 나타내었다.

Keywords

References

  1. E.N. Gribov, A.Y. Zinovieva, I.N. Voropaev, P.A. Simonov, A.V. Romanenko, A.G. Okunev, "Activities of Pt/Sibunit-1562 catalysts in the ORR in PEMFC: Effect of Pt content and Pt load at cathode", Int. J. Hydrogen Energy, 37, 11894 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.055
  2. Y.Y. Shao, G.P. Yin, Y.Z. Gao, "Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell", J. Power Sources, 171, 558 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.004
  3. A.A. Gewirth, M.S. Thorum, "Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges", Inorg. Chem., 49, 3557 (2010). https://doi.org/10.1021/ic9022486
  4. J.F. Wu, X.Z. Yuan, J.J. Martin, H.J. Wang, J.J. Zhang, J. Shen, S.H. Wu, W. Merida, "A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies", J. Power Sources, 184, 104 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.006
  5. Y.Y. Shao, J. Liu, Y. Wang, Y.H. Lin, "Novel catalyst support materials for PEM fuel cells: current status and future prospects", J. Mater. Chem. 19, 46 (2009). https://doi.org/10.1039/b808370c
  6. G. Wu, B.Q. Xu, "Carbon nanotube supported Pt electrodes for methanol oxidation: A comparison between multi- and single-walled carbon nanotubes", J. Power Sources, 174, 148 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.024
  7. Y.Y. Shao, G.P. Yin, Y.Z. Gao, P.F. Shi, "Durability Study of PtC and PtCNTs Catalysts under Simulated PEM Fuel Cell Conditions", J. Electrochem. Soc., 153, A1093 (2006). https://doi.org/10.1149/1.2191147
  8. Y.Y. Shao, G.P. Yin, J. Zhang, Y.Z. Gao, "Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution", Electrochim. Acta, 51, 5853 (2006). https://doi.org/10.1016/j.electacta.2006.03.021
  9. J.J. Wang, G.P. Yin, Y.Y. Shao, Z.B. Wang, Y.Z. Gao, "Investigation of Further Improvement of Platinum Catalyst Durability with Highly Graphitized Carbon Nanotubes Support", J. Phys. Chem. C, 112, 5784 (2008). https://doi.org/10.1021/jp800186p
  10. Y. Shao, S. Zhang, R. Kou, X. Wang, C. Wang, S. Dai, V. Viswanathan, J. Liu, Y. Wang, Y. Lin, "Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction", J. Power Sources, 195, 1805 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.036
  11. J. Zhu, "Graphene production: New solutions to a new problem", Nat. Nanotechnol., 3, 528 (2008). https://doi.org/10.1038/nnano.2008.249
  12. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, "Graphene-based composite materials", Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  13. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, "New insights into the structure and reduction of graphite oxide", Nat. Chem., 1, 403 (2009). https://doi.org/10.1038/nchem.281
  14. Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, "Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets", J. Am. Chem. Soc., 130, 5856 (2008) https://doi.org/10.1021/ja800745y
  15. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, "Processable aqueous dispersions of graphene nanosheets", Nat. Nanotechnol., 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
  16. S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.T. Nguyen, R.S. Ruoff, "Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets", Chem. Mat., 20, 6592 (2008). https://doi.org/10.1021/cm801932u
  17. J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, M. Terrones, "Bulk Production of a New Form of sp2 Carbon: Crystalline Graphene Nanoribbons", Nano Lett., 8, 2773 (2008). https://doi.org/10.1021/nl801316d
  18. C. Xu, X. Wang, "GrapheneMetal Particle Nanocomposites", J. Zhu, J. Phys. Chem. C, 112, 19841 (2008). https://doi.org/10.1021/jp807989b
  19. Y. Li, W. Gao, L. Ci, C. Wang, P.M. Ajayan, "Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation", Carbon, 48, 1124 (2010). https://doi.org/10.1016/j.carbon.2009.11.034
  20. J.H. Jung, H.J. Park, J. Kim, S.H. Hur, "Highly durable Pt/graphene oxide and Pt/C hybrid catalyst for polymer electrolyte membrane fuel cell", J. Power Sources, 248, 1156 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.055
  21. Z.Q. Tian, S.P. Jiang, Y.M. Liang, P.K. Shen, "Synthesis and Characterization of Platinum Catalysts on Multiwalled Carbon Nanotubes by Intermittent Microwave Irradiation for Fuel Cell Applications", J. Phys. Chem. B, 110, 5343 (2006). https://doi.org/10.1021/jp056401o
  22. Y. Wang, S. Song, V. Maragou, P.K. Shen, P. Tsiakaras, "High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction", Appl. Catal. B-Environ., 89, 223 (2009). https://doi.org/10.1016/j.apcatb.2008.11.032
  23. S. Zhang, Y. Shao, G. Yin, Y. Lin, "Self-assembly of Pt nanoparticles on highly graphitized carbon nanotubes as an excellent oxygen-reduction catalyst", Appl. Catal. BEnviron., 102, 372 (2011). https://doi.org/10.1016/j.apcatb.2010.11.029
  24. D. Pantea, H. Darmstadt, S. Kaliaguine, C. Roy, "Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology" Appl. Surf. Sci., 217, 181 (2003). https://doi.org/10.1016/S0169-4332(03)00550-6
  25. V. Pham, T. Cuong, S. Hur, E. Oh, E. Kim, E. Shin, J. Chung, "Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone" J. Mater. Chem., 21, 3371 (2011). https://doi.org/10.1039/c0jm02790a
  26. N. Alexeyeva, K. Tammeveski, A. Lopez-Cudero, J. Solla-Gulln, J.M. Feliu, "Electroreduction of oxygen on Pt nanoparticle/carbon nanotube nanocomposites in acid and alkaline solutions", Electrochim. Acta, 55, 794 (2010). https://doi.org/10.1016/j.electacta.2009.09.030
  27. U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, "Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study", J. Electroanal. Chem., 495, 134 (2001). https://doi.org/10.1016/S0022-0728(00)00407-1
  28. N. Alexeyeva, E. Shulga, V. Kisand, I. Kink, K. Tammeveski, "Electroreduction of oxygen on nitrogen-doped carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions", J. Electroanal. Chem., 648, 169 (2010). https://doi.org/10.1016/j.jelechem.2010.07.014
  29. Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, "Experimental Methods for Quantifying the Activity of Platinum Electrocatalysts for the Oxygen Reduction Reaction", Anal. Chem., 82, 6321 (2010). https://doi.org/10.1021/ac100306c
  30. J. Jang, C. Pak, Y. Kwon, "Ultrasound-assisted polyol synthesis and electrocatalytic characterization of PdxCo alloy and core-shell nanoparticles", J. Power Sources, 201, 179 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.139
  31. M.H. Seo, S.M. Choi, H.J. Kim, W.B. Kim, "The graphene-supported Pd and Pt catalysts for highly active oxygen reduction reaction in an alkaline condition", Electrochem. Commun., 13, 182 (2011). https://doi.org/10.1016/j.elecom.2010.12.008
  32. H. Park, T. Jeon, J.H. Jang, S.J. Yoo, K. Choi, N. Jung, Y. Chung, M. Ahn, Y. Cho, K. Lee, Y. Sung, "Enhancement of oxygen reduction reaction on PtAu nanoparticles via CO induced surface Pt enrichment", Appl. Catal. B-Environ., 129, 375 (2013). https://doi.org/10.1016/j.apcatb.2012.09.041

Cited by

  1. Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles vol.7, pp.1, 2016, https://doi.org/10.5229/JECST.2016.7.1.1