• Title/Summary/Keyword: Catalyst Bed

Search Result 275, Processing Time 0.031 seconds

Oxidative Coupling Reaction of Methane (메탄의 산화성 짝지음 반응에 관한 연구)

  • Kim, Sang-Bum;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.67-74
    • /
    • 1996
  • This study was conducted to find a catalyst system which has high conversion and selectivity for the oxidative coupling of methane to produce ethane and ethylene. Various catalysts were tested in a fixed bed reactor ar $750^{\circ}C$, 1 atm, and the feed ratio($CH_4/O_2$) of 2/1. Under the reaction condition, 10wt%$PbSO_4/MgO$ catalyst showed the highest catalytic activity : methane conversion, $C_2$ selectivity and yield were 50, 40 and 20%, respectively. Catalysts containing sulfate compounds, 10wt%$PbSO_4/MgO$, 10wt%$MgSO_4/MgO$ and $Na_2SO_4/MgO$ revealed a moderate methane conversions such as 38, 50 and 50%, respectively and low $C_2$ selectivities such as 18, 5 and 9%, respectively. Catalysts containing carbonate compounds, 10wt%$PbCO_3/MgO$, 10wt%$Li_2CO_3/MgO$ and $NaCO_3/MgO$, also showed a moderate methane conversions such as 64, 44 and 51%, respectively and low $C_2$ selectivities such as 5, 6 and 2%, respectively. With the existence of chlorine and mercury, $C_2$ selectivity was decreased.

Reaction Characteristics of SOx/NOx Removal Using CuO/γ-Al2O3 Sorbent/Catalyst (CuO/γ-Al2O3 흡수제/촉매를 이용한 SOx/NOx 제거 반응특성)

  • Yoo, Kyung Seun;Kim, Sang Done
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.671-678
    • /
    • 2000
  • Reaction characteristics of simultaneous removal of SOx and NOx have been investigated in a thermogravimetric analyzer and tubular fixed bed reactor using the $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst. Sulfur removal capacity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is largely enhanced above both the temperature of $450^{\circ}C$ and the loading of 6wt% due to the participation of alumina support in a sulfation reaction. The NO reduction efficiency of 8wt% $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst shows the maximum value at $370^{\circ}C$ and then decreases with the increase of reaction temperature due to the oxidation of $NH_3$ gas. The presence of sulfate on the surface of sorbent/catalyst enhances the optimum reaction temperature showing the maximum deNOx efficiency. In the simultaneous removal of SOx and NOx at $250^{\circ}C$. deNOx activity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is rapidly decreased due to the formation of ammonium salts such as $NH_4HSO_4$. In the simultaneous removal reaction of SOx and NOx, the optimum temperature showing the maximum deNOx efficiency increases to $400^{\circ}C$ due to the presence of $SO_2$ gas.

  • PDF

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Properties of Carbon Black Used as Catalysts for Methane Decomposition

  • Kim, Myung-Soo;Han, Ling;Dai, Shuangye;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2006
  • Direct decomposition of methane over three types of carbon black (N330-p, N330-f, and HI-900L) was carried out in a fluidized bed quartz reactor. Properties of carbon black before and after reaction were measured and found to be related with surface structure and weight gain. For N330-p and N330-f, some carbon deposit on the surface was considered to be the reason for the increase of BET surface area and pore volume with weight gain. Carbon deposits on the surface and the conglutination of some aggregates may explain the slight increase of particle size. Properties of HI-900L changed much more significantly with weight gain. It is supposed that the increase of aggregate size of HI-900L were due to some unknown oily components. The corresponding agglomeration might be the reason for the decrease of BET surface area with weight gain, as compared with the increase of that for the case of N330 black.

Ethanol Steam Reforming Reaction for a Clean Hydrogen Production and its Application in a Membrane Reactor (청정수소생산을 위한 에탄올 수증기개질반응 및 막반응기에서의 응용)

  • Lim, Hankwon
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • Ethanol steam reforming reaction considered as a clean hydrogen production method is introduced in this paper. Reactivity and reaction rate equation of ethanol steam reforming reaction using various catalysts, reaction temperature, and molar ratio of ethanol and water will be discussed. In addition to introducing a membrane reactor combining a reactor and a separator, the effect of the use of a membrane reactor on an ethanol conversion and hydrogen yield will be compared to those from a conventional packed-bed reactor.

Study on the Method of Measurement the Heat Sink of the Endothermic Catalytic Reaction in the Flow Reactor (흐름형 반응기에서 흡열 촉매반응의 흡열량 측정 방법에 대한 연구)

  • Lee, Tae Ho;Hyeon, Dong Hun;Kim, Sung Hyun;Jeong, Byung Hun;Han, Jeong Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.991-994
    • /
    • 2017
  • In hypersonic aircraft, increase of aerodynamic and engine heat lead thermal load in airframe. It could lead structural change of aircraft's component and malfunctioning. Endothermic fuels are liquid hydrocarbon fuels which are able to absorb the heat load by undergoing endothermic reactions. In this study, we investigated the method of measuring the heat sink of catalyst by using exo-tetrahydrodicyclopentadiene as a fuel in a packed bed flow reactor similar to the actual reaction conditions.

  • PDF

Prediction of Axial Solid Holdups in a CFB Riser

  • Park, Sang-Soon;Chae, Ho-Jeong;Kim, Tae-Wan;Jeong, Kwang-Eun;Kim, Chul-Ung;Jeong, Soon-Yong;Lim, JongHun;Park, Young-Kwon;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.878-883
    • /
    • 2018
  • A circulating fluidized bed (CFB) has been used in various chemical industries because of good heat and mass transfer. In addition, the methanol to olefins (MTO) process requiring the CFB reactor has attracted a great deal of interest due to steep increase of oil price. To design a CFB reactor for MTO pilot process, therefore, we has examined the hydrodynamic properties of spherical catalysts with different particle size and developed a correlation equation to predict catalyst holdup in a riser of CFB reactor. The hydrodynamics of micro-spherical catalysts with average particle size of 53, 90 and 140 mm was evaluated in a $0.025m-ID{\times}4m-high$ CFB riser. We also developed a model described by a decay coefficient to predict solid hold-up distribution in the riser. The decay coefficient developed in this study could be expressed as a function of Froude number and dimensionless velocity ratio. This model could predict well the experimental data obtained from this work.

A Study on the Vanadium Oxides Catalyst in the Ammoxidation of Methylpyrazine into Cyanopyrazine (메틸피라진으로부터 시아노피라진으로의 암옥시화반응에서의 산화 바나듐 촉매에 관한 연구)

  • Kwon Yong Seung;Park Sang-Eon;Lee Young K.
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.445-451
    • /
    • 1990
  • The catalytic ammoxidation of methylpyrazine into cyanopyrazine over a supported vanadium oxides catalyst on ${\gamma}$-alumina was studied in a continuous-flow fixed bed reactor. Various crystalline phases of vanadium oxides were obtained depending on reduction temperatures. And also the activities for the reaction of methylpyrazine into cyanopyrazine were affected by their major oxidation states of the corresponding crystalline phases. The 10${\%}$ vanadium oxides loaded ${\gamma}$-alumina catalyst, which was reduced at 600$^{\circ}C$ under the hydrogen flow for 2 hours, showed the highest activity and the highest selectivity on cyanopyrazine in the ammoxidation of methylpyrazine.Its major crystalline phase was V$_2$O$_3$ with the presence of V$_6$O$_{13}$ and V$_2$O$_4$(VO$_2$) together. And this coexistance seemed to enhance the activity.

  • PDF

Pretreatment Effect on CO Oxidation over Highly Ordered Mesoporous Silver Catalyst

  • Shon, Jeong-Kuk;Park, Jung-Nam;Hwang, Seong-Hee;Jin, Mingshi;Moon, Ki-Young;Boo, Jin-Hyo;Han, Tae-Hee;Kim, Ji-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.415-418
    • /
    • 2010
  • Highly ordered mesoporous silver material was successfully synthesized from a mesoporous silica template (KIT-6) with 3-D channel structure using the nano-replication method. The effects of $H_2$ or $O_2$ pretreatments on the catalytic performance of the mesoporous silver were investigated using a temperature programmed CO oxidation technique in a fixed bed reactor. The mesoporous silver material that was pretreated with $H_2$ exhibited an excellent catalytic activity compared to the as-prepared and $O_2$-pretreated catalysts. Moreover, this present mesoporous silver material showed good catalytic stability. For the CO oxidation, the apparent activation energy of the $H_2$-pretreated mesoporous silver catalyst was $61{\pm}0.5\;kJ\;mol^{-1}$, which was also much lower than the as-prepared ($132{\pm}1.5\;kJ\;mol^{-1}$) and $O_2$-pretreated ($124{\pm}1.4\;kJ\;mol^{-1}$) catalysts.

Activity Changes of Supported Nickel Catalysts with Respect to Ni Loading (니켈 담지촉매의 니켈 담지량에 따른 활성 변화)

  • Kim, Sang-Bum;Park, Eun-Seok;Cheon, Han-Jin;Kim, Young-Kook;Kim, Myung-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.230-236
    • /
    • 2003
  • Synthesis gas is commercially produced by a steam reforming process. However, the process is highly endothermic and energy-consuming. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at $750{\sim}850^{\circ}C$ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and $H_2$ and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best $MgNiO_2$ solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.