• Title/Summary/Keyword: Cast in Place Pile

Search Result 59, Processing Time 0.021 seconds

Design Method for Cast-in-place Energy Pile Considering Equivalent Heat Exchange Rate (등가열교환율을 적용한 현장타설 에너지파일 설계법)

  • Min, Sunhong;Park, Sangwoo;Jung, Kyoungsik;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1049-1061
    • /
    • 2013
  • In this paper, a relative heat exchange rate is numerically compared for cast-in-place concrete energy piles with different heat exchange pipe configurations, and a new design method for energy piles is proposed. An equivalent heat exchange rate was estimated for the W-type (one series loop), multiple U-type (four parallel loops), and coil-type heat exchanger installed in the same large-diameter drilled shaft. In order to simulate a cooling operation in summer by a CFD analysis, the LWT (leaving water temperature) into a energy pile was fixed at $35^{\circ}C$ and then the EWT (entering water temperature) into a heat pump was monitored. In case of continuously applying the artificial maximum cooling load for 100 hours, all of the three types of heat exchangers show the marginally similar heat exchange rate. However, in case of intermittently applying the cooling load with a cycle of 8 hours operation-16 hours off for 7 consecutive days, the coil type heat exchanger exhibits a heat exchange rate only 86 % of the multiple U-type due to measurable thermal interference between pipe loops in the energy pile. On the other hand, the W-type possesses the similar heat exchange rate to the multiple U-type. The equivalent heat exchange rates for each configuration of heat exchangers obtained from the CFD analysis were adopted for implementing the commercial design program (PILESIM2). Finally, a design method for cast-in-place concrete energy piles is proposed along with a design chart in consideration of typical design factors.

A Numerical Study on the Estimation Method of the Results of Static Pile Load Test Using the Results of Bi-directional Pile Load Test of Barrette Piles (바렛말뚝의 양방향재하시험을 이용한 정적압축재하시험 결과 추정방법에 관한 수치해석적 연구)

  • Hong, Young-Suk;Yoo, Jae-Won;Kang, Sang-Kyun;Choi, Moon-Bong;Lee, Kyung-Im
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.39-53
    • /
    • 2019
  • Bi-directional pile load test (briefly called 'BDH PLT') cannot be performed at loading levels where ultimate bearing capacity could be assessed in field, it is not possible to precisely determine both ultimate load and yield load and under loading. Since the load is transmitted separately to the skin and the end unlike the static pile load test (briefly called 'SPLT') and the direction of loading on the skin is opposite, such methods could have a result different from actual movements of shafts. In this study, three-dimensional finite element method (briefly called '3D FEM') analysis was conducted from results of the BDH PLT, made with barret piles, which were large-diameter cast-in-place concrete piles, and the calculated design constants were applied to the 3D FEM analysis of the SPLT to interpret them numerically and then, actual behaviors of cast-in-place concrete piles were estimated. First, using the results of the BDH PLT with cast-in-place concrete piles, behaviors of the piles made by loading upwards and downwards were analyzed to calculate load-displacement. Second, the design constants, calculated by the 3D FEM analysis and the back analysis, were applied on the 3D FEM analysis for the SPLT, and from these results, behaviors of the SPLT through the BDH PLT was analyzed. Last, the results of the 3D FEM analysis of the SPLT through the BDH PLT was expressed in relationships as {A ratio of bearing capacity of the SPLT and of the BDH PLT (y)} ~ {A ratio of reference displacement and pile circumference (x)}, and they were all classified by reference displacement at 10.0 mm, 15.0 mm, and 25.4 mm.

Resistance Factors for Drilled Shafts Embedded in Weathered Rock (풍화암에 근입된 현장타설말뚝의 저항계수 산정)

  • Yoon, Hong-Jun;Jung, Sung-Jun;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.107-116
    • /
    • 2007
  • Load and Resistance Factor Design (LRFD) method is being used increasingly in geotechnical design practice worldwide, and is expected to completely replace the current Allowable Stress Design (ASD) method in the near future. LRFD has advantages over ASD in that it allows the design of superstructures and substructures at a consistent reliable level by quantification of failure probability based on reliability analysis. At present, resistance factors for cast-in-place piles embedded in rocks are determined by AASHTO only for the intact rock conditions. In Korea, however, most of the bedrocks in which piles are embedded are heavily weathered. Thus, this study will try to determine the resistance factors of heavily weathered rocks (so-called intermediate goo-materials). To this aim, reliability analysis was carried out to evaluate the resistance factors of cast-in-place piles embedded in intermediate geo-materials in Korea. Pile load test data of 21 cast-in-place piles of 4 construction sites were used for the analysis. Depending on the method which calculates the pile capacities, the resulting resistance factors ranged between 0.1 and 0.6.

Evaluation on Field Applicability of Cast-In-Place Pile using Surfactant Grout (계면활성제계 그라우트를 활용한 흙막이 벽체공법(CIP)의 현장 적용성 평가)

  • Do, Jinung;Kim, Hakseung;Park, Bonggeun;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.75-83
    • /
    • 2016
  • In case of underground construction affected by groundwater, CIP (Cast-In-Place Pile) method is generally used to resolve the geo-hydraulic problem. However, as this method has poor connectivity between piles, an auxiliary method for cut-off is needed in many cases. In this study, a new concept earth retaining wall method (H-CIP) with no auxiliary method, by using surfactant grout (Hi-FA) which improves antiwashout and infiltration ability, is introduced, and its field applicability is evaluated. CIP and H-CIP piles were installed with same ground conditions, and field and laboratory tests were conducted to verify the performance. As results, newly contrived H-CIP method shows higher field performance for cut-off and strength than conventional CIP method.

Performance Prediction of Geothermal Heat Pump(GHP) System Using Cast-in-Place Energy Piles (현장 타설 에너지파일을 적용한 지열 히트펌프 시스템의 성능 예측)

  • Sohn, Byonghu;Jung, Kyung-Sik;Choi, Hangseok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.28-36
    • /
    • 2013
  • The aim of this study is to evaluate the performance of the GHP system with 45 cast-in-place energy piles(CEP) for a commercial building. In order to demonstrate the feasibility of a sustainable performance of the system, transient simulations were conducted over 1-year and 20-year periods, respectively. The 1-year simulation results showed that the maximum and minimum temperatures of brine returning from the CEPs were $23.91^{\circ}C$ and $6.66^{\circ}C$, which were in a range of design target temperatures. In addition, after 20 years' operation, these returning temperatures decreased to $21.24^{\circ}C$ and $3.68^{\circ}C$, and finally reached to stable state. Annual average extraction heat of cast-in-place energy piles was 94.3 MWh and injection heat was 65.7 MWh from the 20 years of simulation results. Finally, it is expected this GHP system can operate with average heating SPF of more than 3.45 for long-term.

Load-Displacement Characteristics Study of Barrette Pile by Bi-directional Loading Test (양방향재하시험을 통한 바렛말뚝의 하중-침하특성 연구)

  • Lim, Dae-Sung;Park, Seong-Wan;Lee, Sang-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.754-759
    • /
    • 2008
  • Recently, the construction of buildings and large bridges has been increasing rapidly causing foundation structure growing larger then before, especially in the use of large size cast-in-place piles. Barrette Pile will usually be used at the site where diaphragm wall is the retaining wall to save time and cost in mobilization of equipments. This study uses bi-directional loading test data obtained from two different sites to observe the bearing capacity and displacement characteristics of barrette pile. Numerical analysis of the test is done by using commercial 3D computer program and the interface effect and capacity of the pile as well as displacement characteristics of the pile is verified.

  • PDF

A Study on Performance Improvement of a PHC-W Pile for PHC-W Retaining Wall (PHC-W 흙막이용 PHC-W말뚝의 성능개선에 관한 연구)

  • Kim, Chae Min;Kim, Sung Su;Jeon, Byeong Han;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.27-34
    • /
    • 2017
  • Various earth retaining wall methods were used on the domestic construction sites and a cast in place pile (C.I.P) method was mostly applied at deep excavation. Because of a lot of shortcomings in the C.I.P method, a new method using PHC-W earth retaining wall was developed. The earth retaining wall method using PHC-W piles has a lot of advantages including that it is safer than other earth retaining wall methods due to uniform quality and high rigidity. PHC-W was designed to effectively resist lateral earth pressure by alternating cross section of PHC pile. And increment of bending moment and shear strength were verified through KS F 4306 tests, and were increased by 42% and 98% more than KS standards.

Case Study on Foundation Design of over-water Bridge (해상교량기초의 설계 사례)

  • Jang, Hak-Sung;Jang, Young-Il;Choi, Young-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.221-228
    • /
    • 2005
  • The economic growth brought the demand of bridge connected to island and land increasingly in Korea. Therefore, Civil engineer has faced a lot of problem to be considered such as structural stability, economic feasibility and constructional method. At the bridge site to be constructed, the depth of water is about 24m, the thickness of weathered rock overlaying bed rock is thicker than 36m. If open caisson foundation is supported in bed rock, the hight of foundation is about 60m. It is difficult to construct in these conditions. If open caisson foundation is supported in weathered rock, the size of the foundation should be increased. And If we apply the pile foundation, the higher construction cost will be needed. Under the circumstances, we need a new foundation type-composite foundation that is consisted of open caisson and cast-in-place piles. Because the design concept of composite foundation is not presented in Korea Bridge Design Standard, we are willing to clear the bearing behavior of composite foundation by numerical analysis in this paper.

  • PDF

A Comparison of Roughness Measurement and Load Transfer Test for the Calculation of Unit Skin Friction of Pile Foundation in Soft Rocks (기초 연암부 벽면거칠기 시험과 하중전이 시험 결과의 비교 및 단위주면마찰력의 산정에 대한 연구)

  • Hong, Seok-Woo;Hwang, Geun-Bae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.21-30
    • /
    • 2023
  • One of the methods for calculating unit skin friction of soft-rock-socket parts for cast-in-place piles involves the roughness measurement of the parts. The measurements are conducted during the excavation stage. A roughness measuring device is installed in the excavation hole and the unit skin friction is calculated from the measured surface roughness of the rock socket. Herein, the results of roughness measurement of rock-socket parts in cast-in-place piles and that of load transfer tests are analyzed and compared. The unit skin friction from the roughness measurements can be converted into unit skin friction corresponding to the displacement of a pile generated in a load transfer test. A reduction factor is given as Rf = -0.14n + 1.48.

A Study on the Pile Material Suited for Pile Supported Embankment Reinforced by Geosynthetics (토목섬유로 보강된 성토지지말뚝 구조에 적합한 말뚝재료의 개발)

  • Choi, Choong-Lak;Lee, Kwang-Wu;Kim, Eun-Ho;Jung, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • It is a current trend that the concrete track is applied for high speed railway. In the case of the railway embankment constructed on soft ground, the damage to concrete track which is sensitive to settlement such as distortion and deflection could be caused by very small amount of long term settlement. Pile Supported Embankment method can be considered as the effective method to control the residual settlement of the railway embankment on soft ground. The Geosynthetics is used inside of the embankment to maximize the arching effect transmitting the load of the embankment to the top of the piles. But, PHC piles that are generally used for bridge structures are also applied as the pile supporting the load of embankment concentrated by the effect of the Geosynthetics. That is very low efficiency in respect of pile material. So, in this study, the cast in place concrete pile was selected as the most suitable pile type for supporting the embankment by a case study and the optimum mixing condition of concrete using a by-product of industry was induced by performing the mixing designs and the compressive strength designs. And it is shown that the cast in place pile with the optimum mixing condition using the by-product of industry is 2.8 times more efficient than the PHC pile for the purpose of Pile Supported Embankment by the finite element analysis method.