• Title/Summary/Keyword: Caspase-3저해제

Search Result 34, Processing Time 0.026 seconds

Induction of Apoptosis by HDAC Inhibitor Trichostatin A through Activation of Caspases and NF-κB in Human Prostate Epithelial Cells. (인체 전립선 상피세포에서 HDAC 저해제 trichostatin A의 caspase 및 NF-κB의 활성화를 통한 apoptosis 유도)

  • Park, Cheol;Jin, Cheng-Yun;Choi, Byung-Tae;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.336-343
    • /
    • 2008
  • Histone deacetylases (HDACs) inhibitors have emerged as the accessory therapeutic agents for various human cancers, since they can block the activity of specific HDACs, restore the expression of some tumor suppressor genes and induce cell differentiation, cell cycle arrest and apoptosis in vitro and in vivo. In the present study, we investigated that the effect of trichostatin A (TSA), an HDAC inhibitor, on the cell growth and apoptosis, and its effect on the nuclear factor-kappaB $(NF-{\kappa}B)$ activity in 267B1 human prostate epithelial cells. Exposure of 267B1 cells to TSA resulted in growth inhibition and apoptosis induction in and dose-dependent manners as measured by fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. TSA treatment inhibited the levels of IAP family members such as c-IAP-1 and c-IAP-2 and induced the proteolytic activation of caspase-3, -8 and -9, which were associated with concomitant degradation of poly (ADP-ribose)-polymerase, ${\beta}-catenin$ and laminin B proteins. The increase in apoptosis by TSA was connected with the translocation of $NF-{\kappa}B$ from cytosol to nucleus, increase of the DNA binding as well as promoter activity of $NF-{\kappa}B$, and degradation of cytosolic inhibitor of KappaB $(I{\kappa}B)-{\alpha}$ protein. We therefore concluded that TSA demonstrated anti-proliferative and apoptosis-inducing effects on 267B1 cells in vitro, and that the activation of caspases and $NF-{\kappa}B$ may play important roles in its mechanism of action. Although further studies are needed, these findings provided important insights into the possible molecular mechanisms of the anti-cancer activity of TSA.

Effects of Bcl-2 Overexpressing on the Apoptotic Cell Death Induced by HDAC Inhibitors in Human Leukemic U937 Cells (HDAC 저해제에 의한 인체 백혈병 U937 세포의 apoptosis 유발에 미치는 Bcl-2의 영향)

  • Lee, In-Hyuk;Hur, Man-Gyu;Park, Dong-Il;Choi, Byung-Tae;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.552-560
    • /
    • 2007
  • Histone deacetylase (HDAC) is overexpressed in a variety of cancers and is closely correlated with oncogenic factors. HDAC inhibitors such as trichostatin A(TSA) and sodium butyrate (Na-B) have been shown to induce apoptosis in vitro and in vivo in many cancer cells. The anti-apoptotic Bcl-2 protein has the remarkable ability to prevent cell death and Bcl-2 overexpression has been reported to protect against cell death. We previously reported that the apoptotic cell death of human leukemic U937 cells by TSA and Na-B treatment was associated with the down-regulation of Bcl-2 expression and activation of caspases. In the present study, we investigated the effects of Bcl-2 overexpression on the growth inhibition, cell cycle arrest and apoptosis induced by TSA and Na-B in U937 cells. TSA-induced growth inhibition, cell cycle arrest and apoptosis were significantly attenuated in Bcl-2 overexpressing U937/Bcl-2 cells however Na-B did not affected. Induction of apoptosis by TSA was accompanied by down-regulation of Bcl-2 expression, activation of caspase-3, -8 and -9, and degradation of DNA fragmentation factor/inhibitor of caspase-activated DNase, which was blocked by the overexpression of Bcl-2. Collectively, these findings suggest that ectopic expression of Bcl-2 appeared to inhibit TSA-induced apoptosis by interfering with inhibition of Bcl-2 and caspase activation.

A study of apoptosis induction of Euonymus alatus (Thunb.) Sieb via mitochondrial pathway prooxidant in leiomyomal smooth muscle cells (귀전우(鬼箭羽)의 인간 자궁근종 세포에서 미토콘드리아 경로를 통한 산화제로서 apoptosis 유도작용에 관한 연구)

  • Kwon, Cha-Nam;Lee, Tae-Kyun;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.3
    • /
    • pp.67-76
    • /
    • 2005
  • Purpose : 귀전우(Euonymus alatus, EA)는 현재까지 항종양활성을 나타낸다고 보고되었지만 그 작용 메커니즘에 대해서는 아직 밝혀지지 않은 채 남아 있다. 본 연구에서는, 자궁근종세포(ULSMC)에서 EA의 분자적 수준에서의 작용메커니즘을 연구${\cdot}$검토하고자 하였다. Methods : EA의 열수추출액이 자궁근종세포(ULSMC)와 caspase-3 pretense의 활성도에 미치는 영향을 측정하였다. Results : 우리는 자궁근종에서 EA 유도 세포독성의 메커니즘을 검토하였는바, 근종 세포들은 20-200g/ml 농도의 EA추출물에 6시간 배양될 때, caspase-3가 활성화되고, 그때 세포들은 apoptosis를 유발하게 되었다. EA에 의한 apoptosis의 유도가 진행되었으며, cytochrome- c의 세포질분획에서 양적증가가 caspase-3의 활성보다도 우세하였다. GSH합성의 저해제인 5mM buthionine용액에 전처리는 EA유도 apoptosis를 용이하게 하지만 pan-caspase inhibitor인 Z-VAD-fmk용액 전 처리는 부분적으로 apoptosis유도를 억제하였다. 한편, EA는 건강한 지원자들로 부터 채취한 말초혈액 단핵세포들에 있어서는 독성의 효과는 없었다. Conclusion : 이들 결과들은 EA가 prooxidant로 작용을 하고 그리고 caspase-3 activation과 mitochondrial pathway를 경유하는 apoptosis를 유발한다는 것을 나타낸다. EA의 탕제약제로서 열수추출액이 항산화활성뿐만 아니라, 종양세포에 대한 세포독성효과를 나타낸다고 보고된 바, 이에 향후 근종치료에 대한 임상연구가 필요할 것으로 보인다.

  • PDF

Increased Apoptotic Efficacy of Decitabine in Combination with an NF-kappaB Inhibitor in Human Gastric Cancer AGS Cells (핵산합성 억제제인 decitabine과 NF-κB 활성 저해제인 PDTC의 병용 처리에 의한 인체 위암세포사멸 효과 증진)

  • Choe, Won Kyung;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1268-1276
    • /
    • 2018
  • The cytidine analog decitabine (DEC) acts as a nucleic acid synthesis inhibitor, whereas ammonium pyrrolidine dithiocarbamate (PDTC) is an inhibitor of nuclear factor-${\kappa}B$. The aim of this study was to investigate the possible synergistic inhibitory effect of these two inhibitors on proliferation of human gastric cancer AGS cells. The inhibitory effect of PDTC on AGS cell proliferation was significantly increased by DEC in a concentration-dependent manner, and this inhibition was associated with cell cycle arrest at the G2/M phase and the induction of apoptosis. This induction of apoptosis by the co-treatment with PDTC and DEC was related to the induction of DNA damage, as assessed by H2AX phosphorylation. Further studies demonstrated that co-treatment with PDTC and DEC induced the disruption of mitochondrial membrane potential, increased the generation of intracellular reactive oxygen species (ROS) and the expression of pro-apoptotic Bax, and down-regulated the expression of anti-apoptotic Bcl-2, ultimately resulting in the release of cytochrome c from the mitochondria into the cytoplasm. Co-treatment with PDTC and DEC also activated caspase-8 and caspase-9, which are representative caspases of the extrinsic and intrinsic apoptosis pathways. Co-treatment also activated caspase-3, which was accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Taken together, these data clearly indicated that co-treatment with PDTC and DEC suppressed the proliferation of AGS cells by increasing DNA damage and activating the ROS-mediated extrinsic and intrinsic apoptosis pathways.

Induction of Apoptotic Cell Death by Aqueous Extract of Cordyceps militaris Through Activation of Caspase-3 in Human Hepatocarcinoma Hep3B Cells (Hep3B 간암세포에서 Caspase-3 활성화를 통한 동충하초 열수추출물의 Apoptosis 유도에 관한 연구)

  • Kim, Kyung-Mi;Park, Cheol;Seo, Sang-Ho;Hong, Sang-Hoon;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.714-720
    • /
    • 2008
  • Cordyceps militaris is a medicinal fungus which has been used for patient suffering from cancer in Oriental medicine. It was previously reported that C. militaris extracts are capable of inhibiting tumor growth and inducing apoptosis; however, the anti-poliferative effects of human cancer cells have been poorly understood. In this study, to elucidate the anti-cancer mechanisms of human cancer cells by treatment with aqueous extract of C. militaris (AECM), we investigated the anti-proliferative effects of AECM in human hepatocarcinoma Hep3B cells. AECM treatment inhibited the growth of Hep3B cells and induced the apoptotic cell death in a concentration-dependent manner such as formation of apoptotic bodies and increased populations of apoptotic-sub G1 phase. The induction of apoptosis by AECM was connected with a proteolytic activation of caspase-3 and caspase-8. and concomitant degradation of poly (ADP-ribose) polymerase (PARP) and ${\beta}$-catenin proteins. Furthermore, caspase-3 inhibitor, z-DEVD-fmk, significantly inhibited AECM-induced apoptosis demonstrating the important role of caspase-3 in the bserved cytotoxic effect. Taken together, these findings suggest that AECM-induced inhibition of human hepatocarcinoma cell proliferation is associated with the induction of apoptotic cell death via activation of caspase-3 and C. militaris may have therapeutic potential in human cancer.

Resveratrol Induces Apoptosis in Primary Human Prostate Cancer Cells (Primary 인체 전립선 암세포에서 Resveratrol의 Apoptosis 유도 효과)

  • Kang, Hye-In;Kim, Jae-Yong;Cho, Hyun-Dong;Park, Kyung-Wuk;Kang, Jum-Soon;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1119-1125
    • /
    • 2010
  • To evaluate resveratrol as a prostate cancer preventive material, we investigated its anti-proliferative and apoptotic effects in RC-58T/h/SA#4 primary human prostate cancer cells. Resveratrol significantly decreased the number of viable RC-58T/h/SA#4 cells in a dose- and time-dependent manner. Resveratrol showed cytotoxicity against RC-58T/h/SA#4, LNCaP, PC-3 human prostate cancer cells with $IC_{50}$ values of 245, 320 and $340\;{\mu}M$, respectively. However the cytotoxic potential of resveratrol against normal RWPE-1 cells was lower ($IC_{50}=982\;{\mu}M$). Resveratrol induced cell death as evidenced by the increased formation of apoptotic bodies, nuclear condensation, sub-G1 phase, and DNA fragmentation. Resveratrol activated initiator caspases 8, and 9 as well as effector caspase 3 in a dose-dependent manner. Furthermore, the general caspase inhibitor z-VAD-fmk significantly inhibited resveratrol-induced apoptosis compared to cells without treatment. These results clearly indicate that resveratrol-induced apoptosis was dependent on caspase activation. Further, resveratrol modulated the down regulation of Bcl-2 (anti-apoptotic), and Bid. However, the level of Bax (pro-apoptotic) remained unchanged. These results suggest that resveratrol induced apoptosis in RC-58T/h/SA#4 cells via a mitochondrial-mediated caspase-dependent pathway, suggesting therapeutic potential against prostate cancer.

Regulation of Preimplantation Development of Mouse Embryos by Solubilized Matrigel (용해된 Matrigel에 의한 생쥐 초기배아 발생의 조절)

  • 계명찬;정병목
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2001.02a
    • /
    • pp.68-70
    • /
    • 2001
  • 착상전 초기배아에서 용해된 Matrigedl에 의한 배아의 형태발생, 세포증식, apoptosis 및 UPK활성의 변화를 조사하였다. Matrigel (0.5%)을 첨가한 배양액에서 체외배양된 2-세포기 배아의 형태발생 및 포배당 세포수가 증가되었으며 (GF>GFR>control) 포배의 TUNEL 양성 할구 및 배아내 caspase-3의 활성이 감소되었다. (GF

  • PDF

Induction of Apoptosis in FRTL-5 Thyroid Cells by Okadaic Acid (Okadaic Acid에 의한 FRTL-5 갑상선 세포주의 Apoptosis 유도)

  • Cho Ji-Hyoung;Chung Ki-Yong;Park Jong-Wook
    • Korean Journal of Head & Neck Oncology
    • /
    • v.18 no.2
    • /
    • pp.142-149
    • /
    • 2002
  • Objectve : Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 and 2A. In order to know the mechanism of apoptosis induced by okadaic acid, we treated FRTL-5 thyroid cells with okadaic acid and measured the changes of important proteins that are involved in apoptosis. Materials and Methods: We measured caspase 3 activity, $PLC-{\gamma}1$ degradation, the expression of XIAP, cIAP1, cIAP2, and cytochrome c release in okadaic acid-treated FRTL-5 thyroid cells. Results: Okadaic acid-induced caspase 3 activation and $PLC-{\gamma}1$ degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 80 nmol and time-dependent with a maximal effect at 24 hours after treatment. The elevated caspase 3 activity in okadaic acid treated FRTL-5 thyroid cells are correlated with down-regulation of XIAP and cIAP1, but not cIAP2. General and potent inhibitor of caspases, z-VAD-fmk. abolished okadaic acid-induced caspase 3 activity and $PLC-{\gamma}1$ degradation. The release of cytochrome c in okadaic acid-induced FRTL-5 thyroid cells was dose-dependent with a maximal effect at a concentration of 80 nmol. Conclusions: These findings suggest that mechanism of okadaic acid-induced apoptosis is associated with cytochrome c release and increase of caspase 3 activation in FRTL-5 thyroid cells.

Extract from Artemisia annua Linné Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells (HepG2 간암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 Apoptosis 유도 효과)

  • Kim, Bo Min;Kim, Guen Tae;Kim, Eun Ji;Lim, Eun Gyeong;Kim, Sang-Yong;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1708-1716
    • /
    • 2016
  • The Akt/mammalian target of the rapamycin (mTOR) pathway is activated in the majority of human cancers. Activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy. In this study, we evaluated the apoptotic effect of ethanol extract of Artemisia annua L. through down-regulation of Akt signal pathways and the mitochondrial pathway in hepato-carcinoma cells (HepG2). A. annua extract is known as a medicinal herb that is effective against cancer. We evaluated anti-proliferative activity by MTT-based viability assay and apoptotic effect by Annexin-V/PI staining, mitochondrial membrane potential (MMP), and caspase-3/7 activity as determined by flow cytometry. A. annua treatment led to loss of MMP, resulting in cytochrome c-inducible activation of caspase-3/7. Treatment with A. annua extract reduced activities of Akt/mTOR/anti-apoptotic proteins (such as Bcl-2 and $Bcl-X_L$), leading to increased activation of tumor suppressor p53 and pro-apoptotic proteins (such as Bax and Bak). We applied LY294002 (inhibitor of Akt) and rapamycin (inhibitor of mTOR) to determine the relationship between signal transduction of proteins associated with apoptosis. LY294002 and rapamycin significantly reduced cell viability and increased apoptosis. These results indicate that Bcl-2 and caspase-3 are key regulators in A. annua extract-induced apoptosis in HepG2 cells and are controlled through the Akt/mTOR signaling pathway.