• Title/Summary/Keyword: Caspase-12

Search Result 271, Processing Time 0.029 seconds

The Effect of Palmultang(八物湯) on the Ovarian Functions and Differential Gene Expression of Caspase-3, MAPK and MPG in Female Mice (팔물탕(八物湯)이 자성생쥐의 생식능력과 Caspase-3, MAPK 및 MPG 유전자 발현에 미치는 영향)

  • Joo, Jin-Man;Baek, Seung-Hee;Kim, Eun-Ha;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.3
    • /
    • pp.91-110
    • /
    • 2007
  • Purpose : These experiments were undertaken to evaluate the effect of administration of Palmultang on ovarian functions and differential gene expressions related cell viabilities caspase-3, MAPK and MPG in female mice. Materials and Methods : We administered the Palmultang to 6-week-old female ICR mice for 4, 8, or 12 days. The female mice were injected PMSG and hCG for ovarian hyperstimulation. And then recovered ovaries were minced and extracted mRNA and analyzed cell viability related gene expression. We chose the caspase-3 for cell apoptosis, MAPK and MPG genes for cell viability and DNA repair. To compare the differences, we set a control group treated with plain water at the same volume by the same way. Results : In case of administration of Palmultang, the mean number of total ovulated oocytes and the number of morphologically normal oocytes increased significantly compared to a control group. We were also examined the embryonic developmental competence in vitro. The administration of Palmultang in a concentration with 10 and 100 mg/ml were beneficial effect of embryonic development in preimplantation period. The administration of Palmultang play a role of prevention of cell apoptosis and DNA damages and also increased cell proliferation resulted in ovarian functions. Conclusion : From our results suggested that the medication of Palmultang has beneficial effect on reproductive functions of female mice via prevention of cell apoptosis and DNA damaging and promotion of cell proliferation.

  • PDF

Effects of Polygalae Radix Preparata Cum Glycyrrhizae Radix on 4-HNE-induced Apoptosis in PC-12 cell (지감초자(志甘草煮)가 4-HNE로 유도된 Apoptosis에 미치는 영향)

  • Ham, Mee-Jin;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.31 no.1
    • /
    • pp.77-82
    • /
    • 2016
  • Objectives : The study was designed to observe the effect of Polygalae Radix Preparata Cum Glycyrrhizae Radix on 4-Hydroxynonenal (4-HNE)-induced apoptosis in PC-12 cell.Methods : A cytotoxic test on Polygalae Radix Preparata Cum Glycyrrhizae Radix (PG) was conducted and another MTT assay was conducted to observe the cytoprotective effect against 4-HNE that cause oxidative stress. In addition, in order to observe the expression of Bax, Bcl-2, Caspase-3 and TNF-α protein involved with apoptosis, western blot was conducted.Results : The groups treated with 25 ㎍, 50 ㎍ and 100 ㎍ of PG water extract had no toxicity for PC-12 cell. The groups treated with 25 ㎍, 50 ㎍ and 100 ㎍ of PG water extract showed a significant increase of cell survival rate in comparison with the control group injected by only 4-HNE. The groups treated with 25 ㎍ and 50 ㎍ of PG water extract showed a significant supression on increase of Bax protein expression in the control group. The group treated with 100 ㎍ of PG water extract showed a significant promotion on decrease of Bcl-2 protein expression in the control group. The group treated with 50 ㎍ of PG water extract showed a significant supression on increase of Caspase-3 protein expression in the control group. The group treated with 25 ㎍ of PG water extract showed a significant supression on increase of TNF-α protein expression in the control group.Conclusions : These results suggest that Polygalae Radix Preparata Cum Glycyrrhizae Radix is effective in reducing apoptosis by 4-HNE-dameged cell.

Inhibition of Nitric Oxide-induced Neuronal Apoptosis in PC12 Cells by Epigallocatechin Gallate

  • Jung, Ji-Yeon;Jeong, Yeon-Jin;Han, Chang-Ryoung;Kim, Sun Hun;Kim, Hyun-Jin;Lee, Ki-Heon;Park, Ha-Ok;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.239-246
    • /
    • 2005
  • In the central nervous system, nitric oxide (NO) is associated with many pathological diseases such as brain ischemia, neurodegeneration and inflammation. The epigallocatechin gallate (EGCG), a major compound of green tea, is recognized as protective substance against neuronal diseases. This study is aimed to investigate the effect of EGCG on NO-induced cell death in PC12 cells. Administration of sodium nitroprusside (SNP), a NO donor, decreased cell viability in a dose- and time-dependent manner and induced genomic DNA fragmentation with cell shrinkage and chromatin condensation. EGCG diminished the decrement of cell viability and the formation of apoptotic morphologenic changes as well as DNA fragmentation by SNP. EGCG played as an antioxidant that attenuated the production of reactive oxygen species (ROS) by SNP. The cells treated with SNP showed downregulation of Bcl-2, but upregulation of Bax. EGCG ameliorated the altered expression of Bcl-2 and Bax by SNP. The release of cytochrome c from mitochondria into cytosol and expression of voltage -dependent anion channel (VDAC)1, a cytochrome c releasing channel in mitochondria, were increased in SNP-treated cells, whereas were attenuated by EGCG. The enhancement of caspase-9, preceding mitochondria-dependent pathway, caspase-8 and death receptor-dependent pathway, as well as caspase-3 activities were suppressed by EGCG. SNP upragulated Fas and Fas-L, which are death receptor assembly, whereas EGCG ameliorated the expression of Fas enhanced by SNP. These results demonstrated that EGCG has a protective effect against SNP-induced apoptosis in PC12 cells, through scavenging ROS and regulating the mitocondria- and death receptor-mediated signal pathway. The present study suggest that EGCG might be a natural neuroprotective substance.

Protective Effect of Chlorogenic Acid against Aβ-Induced Neurotoxicity

  • Lee, Chan-Woo;Won, Tae-Joon;Kim, Hak-Rim;Lee, Dong-Ho;Hwang, Kwang-Woo;Park, So-Young
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • Beta-amyloid (A${\beta}$) is considered as one of the major causes of Alzheimer's disease. This study examined the neuroprotective effects of chlorogenic acid, a naturally occurring polyphenol which is distributed widely in plants, fruits and vegetables, against A${\beta}$-induced toxicity. A${\beta}$ decreased significantly the viability of PC12 cells. This was accompanied by an increase in the intracellular calcium levels and cleaved caspase-3. In addition, A${\beta}$ induced an increase in Bax, and a decrease in Bcl-2 compared to the controls. However, a pre-treatment with chlorogenic acid rescued the PC12 cells from A${\beta}$ by attenuating the elevated intracellular calcium levels and reducing the levels of the apoptosis related proteins, including caspase-3, Bcl-2 and Bax. These results suggest that the protective effects of chlorogenic acid are, at least in parts, by attenuating the intracellular calcium influx and reducing apoptosis induced by A${\beta}$.

Extract from Artemisia annua Linné Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells (HepG2 간암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 Apoptosis 유도 효과)

  • Kim, Bo Min;Kim, Guen Tae;Kim, Eun Ji;Lim, Eun Gyeong;Kim, Sang-Yong;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1708-1716
    • /
    • 2016
  • The Akt/mammalian target of the rapamycin (mTOR) pathway is activated in the majority of human cancers. Activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy. In this study, we evaluated the apoptotic effect of ethanol extract of Artemisia annua L. through down-regulation of Akt signal pathways and the mitochondrial pathway in hepato-carcinoma cells (HepG2). A. annua extract is known as a medicinal herb that is effective against cancer. We evaluated anti-proliferative activity by MTT-based viability assay and apoptotic effect by Annexin-V/PI staining, mitochondrial membrane potential (MMP), and caspase-3/7 activity as determined by flow cytometry. A. annua treatment led to loss of MMP, resulting in cytochrome c-inducible activation of caspase-3/7. Treatment with A. annua extract reduced activities of Akt/mTOR/anti-apoptotic proteins (such as Bcl-2 and $Bcl-X_L$), leading to increased activation of tumor suppressor p53 and pro-apoptotic proteins (such as Bax and Bak). We applied LY294002 (inhibitor of Akt) and rapamycin (inhibitor of mTOR) to determine the relationship between signal transduction of proteins associated with apoptosis. LY294002 and rapamycin significantly reduced cell viability and increased apoptosis. These results indicate that Bcl-2 and caspase-3 are key regulators in A. annua extract-induced apoptosis in HepG2 cells and are controlled through the Akt/mTOR signaling pathway.

Compound K induced apoptosis via endoplasmic reticulum Ca2+ release through ryanodine receptor in human lung cancer cells

  • Shin, Dong-Hyun;Leem, Dong-Gyu;Shin, Ji-Sun;Kim, Joo-Il;Kim, Kyung-Tack;Choi, Sang Yoon;Lee, Myung-Hee;Choi, Jung-Hye;Lee, Kyung-Tae
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.165-174
    • /
    • 2018
  • Background: Extended endoplasmic reticulum (ER) stress may initiate apoptotic pathways in cancer cells, and ER stress has been reported to possibly increase tumor death in cancer therapy. We previously reported that caspase-8 played an important role in compound K-induced apoptosis via activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation in HL-60 human leukemia cells. The mechanisms leading to apoptosis in A549 and SK-MES-1 human lung cancer cells and the role of ER stress have not yet been understood. Methods: The apoptotic effects of compound K were analyzed using flow cytometry, and the changes in protein levels were determined using Western blot analysis. The intracellular calcium levels were monitored by staining with Fura-2/AM and Fluo-3/AM. Results: Compound K-induced ER stress was confirmed through increased phosphorylation of $eIF2{\alpha}$ and protein levels of GRP78/BiP, XBP-1S, and $IRE1{\alpha}$ in human lung cancer cells. Moreover, compound-K led to the accumulation of intracellular calcium and an increase in m-calpain activities that were both significantly inhibited by pretreatment either with BAPTA-AM (an intracellular $Ca^{2+}$ chelator) or dantrolene (an RyR channel antagonist). These results were correlated with the outcome that compound K induced ER stress-related apoptosis through caspase-12, as z-ATAD-fmk (a specific inhibitor of caspase-12) partially ameliorated this effect. Interestingly, 4-PBA (ER stress inhibitor) dramatically improved the compound K-induced apoptosis. Conclusion: Cell survival and intracellular $Ca^{2+}$ homeostasis during ER stress in human lung cancer cells are important factors in the induction of the compound K-induced apoptotic pathway.

Effect of treadmill exercise on apoptosis in the retinas of streptozotocin-induced diabetic rats (트레드밀 운동이 streptozotocin에 의해 유발된 당뇨 쥐의 망막 신경세포 사멸에 미치는 영향)

  • Kim, D.Y.;Jung, S.Y.;Kim, T.W.;Sung, Y.H.
    • Exercise Science
    • /
    • v.21 no.3
    • /
    • pp.289-298
    • /
    • 2012
  • In the present study, we investigated the effect of treadmill exercise on apoptotic neuronal cell death in the retinas of streptozotocin-induced diabetic rats. Twenty-eight male Sprague-Dawley rats were used for this study. The animals were divided into four groups(n = 7 in each group):(1) control group, (2) exercise group, (3) diabetes-induced group, (4) diabetes-induced and exercise group. Diabetes mellitus(DM) was induced by intraperitoneal injection of streptozotocin. The rats in the exercise groups were forced to run on the treadmill for 30 minutes once a day, five times per a week, during 12 weeks. In this study, a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay and western blot for the expressions of caspase-3, cytochrome c, Bax, and Bcl-2 in the retinas were conducted for the detection of apoptotic retinal cell death. The present results showed that the number of TUNEL-positive cells was increased in the retinas of the diabetic rats, whereas treadmill exercise suppressed this number. The expressions of pro-apoptotic factors caspase-3, cytochrome c, and Bax were enhanced and the expressions of anti-apoptotic factor Bcl-2 was decreased in the retinas of the diabetic rats. In contrast, treadmill exercise suppressed the expressions of caspase-3, cytochrome c, and Bax and increased the expression of Bcl-2. The present study demonstrated that treadmill exercise suppressed diabetes-induced apoptotic neuronal cell death in the retinas. Based on the present results, treadmill exercise may be effective therapeutic strategy for the alleviating complications of diabetes patients.

Protective Effects of Boyanghwanoh-tang on Serum and Glucose Deprivation-induced Apoptosis of PC12 Cells (보양환오탕이 영양혈청결핍에 의한 PC12 세포의 고사에 미치는 영향)

  • 김종길;정승원;임준모;장호현;윤종민;이기상;문병순
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.179-192
    • /
    • 2003
  • Objectives : Boyanghwanoh-tang (Buyanhaiwu-tang) has been used as a prescription for stroke, senile and vascular dementia, ischemic brain and heart damage in Oriental traditional medicine. However, there is little known about the mechanism by which the water extracts of Boyanghwanoh-tang (Buyanhaiwu-tang) rescue cells fromthese damages, and little is known about the protective mechanisms of Boyanghwanoh-tang (Buyanhaiwu-tang) on oxidative stress in neuronal cells. Therefore, we have investigated the role of Boyanghwanoh-tang (Buyanhaiwu-tang) on serum and glucose deprived apoptosis in PC12 cells. Methods : PC12 Cells have been used extensively as a model for studying the cellular and molecular effects of neuronal cells. The viability of cells was measured by MIT assay. We used DNA fragmentation and caspase 1, 2, 3, 6, 9-likeproteases activation assay. Transcriptional activation of NF-kB was assessed by using electrophoretic mobility shift assay. Results : Boyanghwanoh-tang (Buyanhaiwu-tang) rescued PC12 cells from apoptotic death by serum and glucose deprivation in a dose-dependent manner. The nuclear staining of PC12 cells clearly showed that Boyanghwanoh-tang (Buyanhaiwu-tang) attenuated nuclear condensation and fragmentation, which represent typical neuronal apoptotic characteristics. Boyanghwanoh-tang (Buyanhaiwu-tang) also prevents fragmentation of genomic DNA and activation of caspase 3-like protease in serum and glucose deprived PC12 cells. Furthermore, Boyanghwanoh-tang (Buyanhaiwu-tang) reduced the activation of NF-kB by serum and glucose-deprived apoptosis. Conclusions : These findings suggest that serum and glucose deprivation induces reduced glutathione (GSH) depletion, and consequently, apoptosis through endogenously produced reactive oxygen species in PC12 cells. Also, our data indicated that Boyanghwanoh-tang (Buyanhaiwu-tang) has protective effects against the serum and glucose deprived deaths of PC12 cells, which are mediated by the generation of GSH that, in turn, can reduce oxidative stress caused by reactive oxygen species (ROS) such as hydrogen peroxide.

  • PDF

Study on Anti-Cancer Effects of Backhapgogumtanggami-bang (백합고금탕가미방의 항종양 효과에 관한 연구)

  • 김병주;문구;문석재;원진희;김태균;배남규
    • The Journal of Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.64-74
    • /
    • 2001
  • Objectives : The effects of aqueous extract of Backhapgogumtanggami-bang (BGTG, a newly devised herb medicine) on the induction of apoptotic cell death were investigated in human lymphoid origin leukemia cell lines, HL-60. Methods : Cells were treated with various concentrations and $400{\;}\mu\textrm{g}/ml$ BGTG for 12 hr. Genomic DNA was isolated and separated on 1.8% agarose gels. Lysates from the cells were used to measure the activity of caspase-2, -3, -8, and -9 protease by using fluorogenic peptide. Cells were preincubated with SB-203580 for 30 min. Nuclear protein from the cells was incubated with oliginucleotide probe of AP-l and NF-kB. Nuclear extracts from the cells were isolated and reacted with antibodies. Results : The viability of HL-60 cells were markedly decreased by BGTG extract in a dose- and time-dependent manner. BGTG extract induced the apoptotic death of HL-60 cells which was characterized by the DNA fragmentation. The activations of Caspase-2, 3, and 9 were induced by BGTG. However, selective inhibition of the p38 mitogen-activated protein kinase pathways by SB-203580 did not affect the extent of BGTG extract-induced cell death. Furthermore, we observed the transient activations of transcriptional factors such as AP-l and NF-kB. Conclusions : These results suggest that BGTG extract induced apoptotic death of HL-60 cells and caspase activations as well as the modulation of transcriptional factors such as AP-1 and NF-kB.

  • PDF

Apoptotic Cell Death in TrkA-overexpressing Cells: Kinetic Regulation of ERK Phosphorylation and Caspase-7 Activation

  • Jung, Eun Joo;Kim, Deok Ryong
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2008
  • The TrkA tyrosine kinase is activated by autophosphorylation in response to NGF, and plays an important role in cell survival, differentiation, and apoptosis. To investigate its role in cell fate determination, we produced stable TrkA-inducible SK-N-MC and U2OS cell lines using the Tet-On system. Interestingly, TrkA overexpression induced substantial cell death even in the absence of NGF, by stimulating ERK phosphorylation and caspase-7 activation leading to PARP cleavage. TrkA-mediated cell death was shown by the annexin-V binding assay to be, at least in part, apoptotic in both SK-N-MC and U2OS cells. Furthermore, the truncated form (p18) of Bax accumulated in the TrkA-induced cells, suggesting that TrkA induces mitochondria-mediated apoptosis. NGF treatment augmented the cell death induced by TrkA overexpression. This TrkA-induced cell death was blocked by the tyrosine kinase inhibitors, K-252a and GW441756. Moreover, TrkA overexpression inhibited long-term proliferation of both the neuronal SK-N-MC cells and the non-neuronal U2OS cells, suggesting a potential role of TrkA as a tumor suppressor.