• Title/Summary/Keyword: Caspase 1

Search Result 1,308, Processing Time 0.025 seconds

Antioxidant and Anticancer Activities of Euonymus porphyreus Extract in Human Lung Cancer Cells A549 (인체 폐암 세포주 A549에서 Euonymus porphyreus 추출물의 항산화 및 항암활성 분석)

  • Jin, Soojung;Oh, You Na;Son, Yu Ri;Bae, Soobin;Park, Jung-ha;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.199-208
    • /
    • 2021
  • Euonymus porphyreus, a species of plant in the Celastraceae family, is widely distributed in East Asia, especially in Southern China. The botanical characteristics of E. porphyreus have been reported, but its antioxidative and anticancer activities remain unclear. In this study, we evaluated the antioxidative and anticancer effects of ethanol extracts of E. porphyreus (EEEP) and the molecular mechanism of its anticancer activity in human lung adenocarcinoma A549 cells. The total polyphenol and flavonoid compound contents from EEEP were 115.42 mg/g and 23.07 mg/g, respectively. EEEP showed significant antioxidative effects with a concentration at 50% of the inhibition (IC50) value of 11.09 ㎍/ml, as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. EEEP showed cytotoxic activity by increasing the SubG1 cell population of A549 cells in a dose-dependent manner. Apoptosis in A549 cells treated with EEEP was evident due to increased apoptotic cells and apoptotic bodies, as detected by Annexin V and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. EEEP-induced apoptosis resulted in increased expression of the First apoptosis signal (Fas), p53, and Bax, with decreased expression of Bcl-2 and subsequent activation of caspase-8, -9, and caspase-3, leading to cleavage of poly (ADP-ribose) polymerase (PARP). Collectively, these results suggest that EEEP may exert an anticancer effect by inducing apoptosis in A549 cells through both intrinsic and extrinsic pathways.

Apoptotic Effect of Proso Millet Grains on Human Breast Cancer MDA-MB-231Cells Is Exerted by Activation of BAK and BAX, and Mitochondrial Damage-mediated Caspase Cascade Activation (기장 종자 유래 추출물의 인간 유방암 MDA-MB-231 세포에 대한 세포독성에 관련된 미토콘드리아 손상-의존적 아폽토시스 유도 효과)

  • Do Youn Jun;Cho Rong Han;Young Ho Kim
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • To examine the antitumor effect of proso millet grains, whether proso millet grains exert apoptotic activity against human cancer cells was investigated. When the cytotoxicity of 80% ethanol (EtOH) extract of proso millet grains was tested against various cancer cells using MTT assay, more potent cytotoxicity was observed against human breast cancer MDA-MB-231 cells than against other cancer cells. When the EtOH extract was evaporated to dryness, dissolved in water, and then further fractionated by sequential extraction using four organic solvents (n-hexane, methylene chloride, ethyl acetate, and n-butanol), the BuOH fraction exhibited the highest cytotoxicity against MDA-MB-231 cells. Along with the cytotoxicity, TUNEL-positive apoptotic nucleosomal DNA fragmentation and several apoptotic responses including BAK/BAX activation, mitochondria membrane potential (Δψm) loss, mitochondrial cytochrome c release into the cytosol, activation of caspase-8/-9/-3, and degradation of poly (ADP-ribose) polymerase (PARP) were detected. However, human normal mammary epithelial MCF-10A cells exhibited a significantly lesser extent of sensitivity compared to malignant MDA-MB-231 cells. Irrespective of Fas-associated death domain (FADD)-deficiency or caspase-8-deficiency, human T acute lymphoblastic leukemia Jurkat cells displayed similar sensitivities to the cytotoxicity of BuOH fraction, excluding an involvement of extrinsic apoptotic mechanism in the apoptosis induction. These results demonstrate that the cytotoxicity of BuOH fraction from proso millet grains against human breast cancer MDA-MB-231 cells is attributable to intrinsic apoptotic cell death resulting from BAK/BAX activation, and subsequent mediation of mitochondrial damage-dependent activation of caspase cascade.

Ani-survivin DNAzymes Inhibit Cell Proliferation and Migration in Breast Cancer Cell Line MCF-7

  • Zhang, Min;Sun, Yi-Fu;Luo, Su
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6233-6237
    • /
    • 2012
  • Survivin, a new member of the inhibitor of apoptosis protein (IAP) family, both inhibits apoptosis and regulates the cell cycle. It is overexpressed in breast tumor tissues. In this study, we designed two survivin specific DNAzymes (DRz1 and DRz2) targeting survivin mRNA. The results showed that DRz1 could decrease the expression of survivin by nearly 60%. Furthermore, DRz1 significantly inhibited cell proliferation, induced apoptosis and inhibited migration in MCF-7 cells. In addition, down-regulation of survivin expression was associated with increased caspase-3 and -9 activities in MCF-7 cells after 24 h transfection. In our experiments, the efficacy of DRz1 to influence survivin levels and associated effects were better than DRz2. Survivin-DRz1 might have anti-tumorigenic activity and may potentially provide the basis for a novel therapeutic intervention in breast cancer treatment.

Lipopeptides Extract from Bacillus Amyloliquefaciens Induce Human Oral Squamous Cancer Cell Death

  • Kuo, Chen-Hui;Lin, Yun-Wei;Chen, Ruey-Shyang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • A lipopeptide extract of Bacillus amyloliquefaciens BACY1 (BLE) was found to induce cell death in human oral squamous cell carcinoma (OSCC) cell lines, SCC4 and SCC25, in this study. The results of MTT assay showed that BLE inhibited OSCC cell proliferation in a dose-dependent manner. BLE was also effective in increasing the sub-G1 phases. Furthermore, when membrane damage in SCC4 cells treated with BLE was monitored by LDH assay, release of LDH was significantly increased. The protein and mRNA levels of pro-apoptotic Bax, and caspase-3 were up-regulated by BLE. Taken together, these results suggest that BLE induces apoptosis and then inhibits the cell proliferation of human OSCC cells.

XIAP Associated Factor 1 (XAF1) Represses Expression of X-linked Inhibitor of Apoptosis Protein (XIAP) and Regulates Invasion, Cell Cycle, Apoptosis, and Cisplatin Sensitivity of Ovarian Carcinoma Cells

  • Zhao, Wen-Jing;Deng, Bo-Ya;Wang, Xue-Mei;Miao, Yuan;Wang, Jian-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2453-2458
    • /
    • 2015
  • Background: X-linked inhibitor of apoptosis protein (XIAP) associated factor 1 (XAF1) exhibits aberrantly low or absent expression in various human malignancies, closely associated with anti-apoptosis and overgrowth of cancer cells. However, limited attention has been directed towards the contribution of XAF1 to invasion, apoptosis, and cisplatin (DDP)-resistance of epithelial ovarian cancer (EOC) cells. This study aimed to evaluate the potential effects of XAF1 on invasion, cell cycle, apoptosis, and cisplatin-resistance by overexpressing XAF1 in SKOV-3 and SKOV-3/DDP cells. Methods and Results: The pEGFP-C1-XAF1 plasmid was transfected into SKOV-3 and SKOV-3/DDP cells, and the expression of XAF1 at both mRNA and protein levels was analyzed by reverse transcription-PCR and Western blotting. Overexpression of XAF1 suppressed XIAP expression in both SKOV-3 and SKOV-3/DDP cells. Transwell invasion assays demonstrated that XAF1 exerted a strong anti-invasive effect in XAF1-overexpressing cells. Moreover, flow cytometry analysis revealed that XAF1 overexpression arrested the cell cycle at G0/G1 phase, and cell apoptosis analysis showed that overexpression of XAF1 enhanced apoptosis of SKOV-3 and SKOV-3/DDP cells apparently by activating caspase-9 and caspase-3. Furthermore, MTT assay confirmed a dose-dependent inhibitory effect of cisplatin in the tested tumor cells, and overexpression of XAF1 increased the sensitivity of SKOV-3 and SKOV-3/DDP cells to cisplatin-mediated antiproliferative effects. Conclusions: In summary, our data indicated that overexpression of XAF1 could suppress XIAP expression, inhibit invasion, arrest cell cycle, promote apoptosis, and confer cisplatin-sensitivity in SKOV-3 and SKOV-3/DDP cells. Therefore, XAF1 may be further assessed as a potential target for the treatment of both cisplatin-resistant and non-resistant EOCs.

5-aminoimidazole-4-carboxamide Riboside Induces Apoptosis Through AMP-activated Protein Kinase-independent and NADPH Oxidase-dependent Pathways

  • Wi, Sae Mi;Lee, Ki-Young
    • IMMUNE NETWORK
    • /
    • v.14 no.5
    • /
    • pp.241-248
    • /
    • 2014
  • It is debatable whether AMP-activated protein kinase (AMPK) activation is involved in anti-apoptotic or pro-apoptotic signaling. AICAR treatment increases AMPK-${\alpha}1$ phosphorylation, decreases intracellular reactive oxygen species (ROS) levels, and significantly increases Annexin V-positive cells, DNA laddering, and caspase activity in human myeloid cell. AMPK activation is therefore implicated in apoptosis. However, AMPK-${\alpha}1$-knockdown THP-1 cells are more sensitive to apoptosis than control THP-1 cells are, suggesting that the apoptosis is AMPK-independent. Low doses of AICAR induce cell proliferation, whereas high doses of AICAR suppress cell proliferation. Moreover, these effects are significantly correlated with the downregulation of intracellular ROS, strongly suggesting that AICAR-induced apoptosis is critically associated with the inhibition of NADPH oxidase by AICAR. Collectively, our results demonstrate that in AICAR-induced apoptosis, intracellular ROS levels are far more relevant than AMPK activation.

Sphingosine-1-Phosphate-Induced ERK Activation Protects Human Melanocytes from UVB-Induced Apoptosis

  • Kim, Dong-Seok;Kim, Sook-Young;Lee, Jai-Eun;Kwon, Sun-Bang;Sohn, Uy-Dong;Park, Kyoung-Chan
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.95.2-96
    • /
    • 2003
  • Ultraviolet B (UVB) is known to induce apoptosis in human melanocytes. Here we show the cytoprotective effect of sphingosine-1-phosphate (S1P) against UVB-induced apoptosis. We also show that UVB-induced apoptosis of melanocytes is mediated by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, and that S1P prevents apoptosis by inhibiting this apoptotic pathway. We further investigated three major subfamilies of mitogen-activated protein (MAP) kinases and the Akt pathway after UVB irradiation. (omitted)

  • PDF

Down-regulation of SENP1 Expression Increases Apoptosis of Burkitt Lymphoma Cells

  • Huang, Bin-Bin;Gao, Qing-Mei;Liang, Wei;Xiu, Bing;Zhang, Wen-Jun;Liang, Ai-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2045-2049
    • /
    • 2012
  • Objective: To investigate the effect of down-regulation of Sentrin/SUMO-specific protease 1 (SENP1) expression on the apoptosis of human Burkitt lymphoma cells (Daudi cells) and potential mechanisms. Methods: Short hairpin RNA (shRNA) targeting SENP1 was designed and synthesized and then cloned into a lentiviral vector. A lentiviral packaging plasmid was used to transfect Daudi cells (sh-SENP1-Daudi group). Daudi cells without transfection (Daudi group) and Daudi cells transfected with blank plasmid (sh-NC-Daudi group) served as control groups. Flow cytometry was performed to screen GFP positive cells and semiquantitative PCR and Western blot assays were employed to detect the inference efficiency. The morphology of cells was observed under a microscope before and after transfection. Fluorescence quantitative PCR and Western blot assays were conducted to measure the mRNA and protein expression of apoptosis related molecules (caspase-3, 8 and 9). After treatment with $COCl_2$ for 24 h, the mRNA and protein expression of hypoxia inducible factor -$1{\alpha}$ (HIF-$1{\alpha}$) was determined. Results: Sequencing showed the expression vectors of shRNA targeting SENP1 to be successfully constructed. Following screening of GFP positive cells by FCM, semiqualitative PCR showed the interference efficiency was $79.2{\pm}0.026%$. At 48 h after transfection, the Daudi cells became shrunken, had irregular edges and presented apoptotic bodies. Western blot assay revealed increase in expression of caspase-3, 8 and 9 with prolongation of transfection (P<0.05). Following hypoxia treatment, mRNA expression of HIF-$1{\alpha}$ remained unchanged in three groups (P>0.05) but the protein expression of HIF-$1{\alpha}$ markedly increased (P<0.05). However, in the sh-SENP1-Daudi group, the protein expression of HIF-$1{\alpha}$ remained unchanged Conclusion: SENP1-shRNA can efficiently inhibit SENP1 expression in Daudi cells. SENP1 inhibition may promote cell apoptosis. These findings suggest that SENP1 may serve as an important target in the gene therapy of Burkitts lymphoma.

Role of stearyl-coenzyme A desaturase 1 in mediating the effects of palmitic acid on endoplasmic reticulum stress, inflammation, and apoptosis in goose primary hepatocytes

  • Tang, Bincheng;Qiu, Jiamin;Hu, Shenqiang;Li, Liang;Wang, Jiwen
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1210-1220
    • /
    • 2021
  • Objective: Unlike mammals, goose fatty liver shows a strong tolerance to fatty acids without obvious injury. Stearyl-coenzyme A desaturase 1 (SCD1) serves crucial role in desaturation of saturated fatty acids (SAFs), but its role in the SAFs tolerance of goose hepatocytes has not been reported. This study was conducted to explore the role of SCD1 in regulating palmitic acid (PA) tolerance of goose primary hepatocytes. Methods: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide was examined to reflect the effect of PA on hepatocytes viability, and quantitative polymerase chain reaction was used to detect the mRNA levels of several genes related to endoplasmic reticulum (ER) stress, inflammation, and apoptosis, and the role of SCD1 in PA tolerance of goose hepatocytes was explored using RNA interfere. Results: Our results indicated that goose hepatocytes exhibited a higher tolerant capacity to PA than human hepatic cell line (LO2 cells). In goose primary hepatocytes, the mRNA levels of fatty acid desaturation-related genes (SCD1 and fatty acid desaturase 2) and fatty acid elongate enzyme-related gene (elongase of very long chain fatty acids 6) were significantly upregulated with 0.6 mM PA treatment. However, in LO2 cells, expression of ER stress-related genes (x box-binding protein, binding immunoglobulin protein, and activating transcription factor 6), inflammatory response-related genes (interleukin-6 [IL-6], interleukin-1β [IL-1β], and interferon-γ) and apoptosis-related genes (bcl-2-associated X protein, b-cell lymphoma 2, Caspase-3, and Caspase-9) was significantly enhanced with 0.6 mM PA treatment. Additionally, small interfering RNA (siRNA) mediated downregulation of SCD1 significantly reduced the PA tolerance of goose primary hepatocytes under the treatment of 0.6 mM PA; meanwhile, the mRNA levels of inflammatory-related genes (IL-6 and IL-1β) and several key genes involved in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), forkhead box O1 (FoxO1), mammalian target of rapamycin and AMPK pathways (AKT1, AKT2, FoxO1, and sirtuin 1), as well as the protein expression of cytochrome C and the apoptosis rate were upregulated. Conclusion: In conclusion, our data suggested that SCD1 was involved in enhancing the PA tolerance of goose primary hepatocytes by regulating inflammation- and apoptosis-related genes expression.

Differential Effects of Fumonisin $B_1$ on Cell Death in Cultured Cells: the Significance of the Elevated Sphinganine

  • Yu, Chang-Hun;Lee, Yong-Moon;Yun, Yeo-Pyo;Yoo, Hwan-Soo
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.136-143
    • /
    • 2001
  • Fumonisins are specific inhibitors of ceramide synthase in sphingolipid metabolism. An alteration in sphingolipid metabolism as a result of fumonisin exposure is related to cell death (Yoo et al., 1992). The objective of this study was to investigate whether elevated free sphinganine levels are related to the sensitivity of cultured cells to fumonisin exposure. Fumonisin $B_1$ elevated the intracellular free sphinganine concentraions in both LLC-$PK_1$ and Chinese hamster ovary (CHO) cells. However, CHO cells are resistant to fumonisin cytotoxicity at 50${u}m$, while LLC-$PK_1$ cells are sensitive at concentrations greater than 357M. The intracellular concentration of free sphinganine in LLC-$PK_1$ cells treated at 50${u}m$ fumonisin $B_1$ for 72 h was approximately 1450 pmol/mg protein relative to the 37 pmol observed in the control culture. Under the same conditions, the population of apoptotic cells in the 50${u}m$ fumonisin $B_1$-treated culture was approximately 37% of the total compared to 12% in the control. The caspase III-like activity after 72 h in the 50${\mu}$M fumonisin $B_1$-exposed culture Increased to approximately 50 $pmol/mg$ protein/hr compared to 6 $pmol/mg$ protein/hr in the control. L-cycloserine, a serine palmitoyltransferase inhibitory reduced the fumonisin $B_1$-stimulated caspase III-like activity down to the control level. Under the same culture conditions, the intracellular concentration of free sphinganine after-cycloserine plus fumonisin $B_1$ treatment was 140 pmol/mg protein compared to 1450 $pmol/mg$ protein in fumonisin $B_1$ alone. The intracellular concentration of free sphinganine in CHO cells treated with 50${u}m$ fumonisin $B_1$ for 72 h was al)proximately 460 pmol/mg protein, indicating that the mass amount of elevated free sphinganine in the CHO cells was about 32% of that in LLC-$PK_1$ cells. Adding exogenous sphinganine to the CHO cells along with 50${u}m$ fumonisin $B_1$ treatment for 72 h caused both necrosis and apoptosis. In conclusion, the elevated endogenous sphinganine acts as a contributing factor to the fumonisin-induced cell death.

  • PDF