• 제목/요약/키워드: Caspase 1

검색결과 1,285건 처리시간 0.027초

Potassium cyanate에 의해 조절되는 사람 대장암 세포의 방사선 감수성 변화 (Radio-sensitivity of Human Colorectal Cancer Cell is Regulated by Potassium Cyanate)

  • 양은주;장정현
    • 한국방사선학회논문지
    • /
    • 제13권1호
    • /
    • pp.125-132
    • /
    • 2019
  • Potassium cyanate는 무기화합물로 단백질의 번역 후 과정에서 카바밀화(carbamylation)을 유도할 수 있고 이러한 카바밀화 반응은 다양한 질병 및 조건에서 세포의 사멸과 관련이 있다. 이전 연구결과에서 KCN은 사람 대장암 세포주인 HCT 116세포의 방사선 감수성을 향상시키는 것을 확인하였지만 그 기전을 명확히 규명하기에는 많이 부족한 실정이다. 본 연구에서는 방사선에 다소 저항성을 가지는 대장암 세포에서 KCN이 방사선 감수성을 향상시키고 세포사멸 시키는 기전을 확인하기 위해 2 mM의 KCN 처리 후 저 선량의 광자선을 조사하여 세포주기, 세포 생존율, 세포 사멸 관련 단백질(caspase-1, PARP) 발현량, $TNF-{\alpha}$ 분비 및 $TNF-{\alpha}$ 관련 전사인자($NF-{\kappa}B$)의 연관성을 확인하였다. 그 결과 KCN 처리 후 광자선을 조사한 세포에서 caspase-3 및 PARP의 활성이 증가하고 이는 세포주기의 정지와 세포사멸을 유도하였다. 또한 이 과정에서 DNA 전사인자인 $NF-{\kappa}B$에 의해 세포 외로 $TNF-{\alpha}$를 지속적으로 분비하여 세포사멸에 관여함을 확인하였다. 이러한 결과들을 토대로 KCN이 radiosensitizer로서 작용할 수 있는 가능성이 있다고 사료된다.

Expression of Functionally Human Interleukine-18 by Tobacco Plant Cell

  • 임영이;권태호;박승문;김대혁;장용석;양문식
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.193-196
    • /
    • 2001
  • IL-18. formerly known as IGIF(interferon -gamma inducing factor), is structurally IL-l related but functionally IL-12 related pro-inflammatory cytokine. The human IL -18(hIL-lS), like IL-$1{\beta}$, is synthesized as a biologically inactive precursor of 24kDa lacking a signal peptide, and then cleaved into an active mature form by cystein protease IL-$1{\beta}$ converting enzyme (ICE: caspase- 1), We tested if the mature hIL -18 can be expressed and secreted into culture medium by transforming the forming gene construct consisting of a mature hIL-18 gene fused to signal peptide of rice amylase lA. Secondly, we were tested if the pro- IL-18 could be processed into a biologically active form by caspase-l like protease in plant. Cell suspension culture was established from the leaf-derived calli of transgenic tobacco plant. Southern and Northern blot analysis indicated the expression of both pro-hIL-18 and mature hIL-18 plant cells. Western blot analysis introduced the protein products of pro- hIL -18 and mhIL -18 were observed in transigenic cell lines. In addition, the molecular size of recombinant pro-hILl-18 and mhIL-18 were estimated to be 24kDa and 18kDa, respectively. ELISA revealed that the amount of pro- hIL -18 was 1.3ug per gram of fresh weight calli. Moreover, the presence of mhIL-18 was detected in the culture medium and it appeared to be 25ug/L.

  • PDF

Clostridium difficile Toxin A Induces Reactive Oxygen Species Production and p38 MAPK Activation to Exert Cellular Toxicity in Neuronal Cells

  • Zhang, Peng;Hong, Ji;Yoon, I Na;Kang, Jin Ku;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1163-1170
    • /
    • 2017
  • Clostridium difficile releases two exotoxins, toxin A and toxin B, which disrupt the epithelial cell barrier in the gut to increase mucosal permeability and trigger inflammation with severe diarrhea. Many studies have suggested that enteric nerves are also directly involved in the progression of this toxin-mediated inflammation and diarrhea. C. difficile toxin A is known to enhance neurotransmitter secretion, increase gut motility, and suppress sympathetic neurotransmission in the guinea pig colitis model. Although previous studies have examined the pathophysiological role of enteric nerves in gut inflammation, the direct effect of toxins on neuronal cells and the molecular mechanisms underlying toxin-induced neuronal stress remained to be unveiled. Here, we examined the toxicity of C. difficile toxin A against neuronal cells (SH-SY5Y). We found that toxin A treatment time- and dose-dependently decreased cell viability and triggered apoptosis accompanied by caspase-3 activation in this cell line. These effects were found to depend on the up-regulation of reactive oxygen species (ROS) and the subsequent activation of p38 MAPK and induction of $p21^{Cip1/Waf1}$. Moreover, the N-acetyl-$\text\tiny L$-cysteine (NAC)-induced down-regulation of ROS could recover the viability loss and apoptosis of toxin A-treated neuronal cells. These results collectively suggest that C. difficile toxin A is toxic for neuronal cells, and that this is associated with rapid ROS generation and subsequent p38 MAPK activation and $p21^{Cip1/Waf1}$ up-regulation. Moreover, our data suggest that NAC could inhibit the toxicity of C. difficile toxin A toward enteric neurons.

Proteomics Analysis of Gastric Epithelial AGS Cells Infected with Epstein-Barr Virus

  • Ding, Yong;Li, Xiao-Rong;Yang, Kai-Yan;Huang, Li-Hua;Hu, Gui;Gao, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.367-372
    • /
    • 2013
  • Effects of the Epstein-Barr virus (EBV) on cellular protein expression are essential for viral pathogenesis. To characterize the cellular response to EBV infection, differential proteomes of gastric epithelial AGS cells were analyzed with two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and liquid chromatography electrospray/ionization ion trap (LC-ESI-IT) mass spectrometry identification. Mass spectrometry identified 9 altered cellular proteins, including 5 up-regulated and 4 down-regulated proteins after EBV infection. Notably 2-DE analysis revealed that EBV infection induced increased expression of heat shock cognate 71 kDa protein, actin cytoplasmic 1, pyridoxine-5'-phosphate oxidase, caspase 9, and t-complex protein 1 subunit alpha. In addition, EBV infection considerably suppressed those cellular proteins of zinc finger protein 2, cyclin-dependent kinase 2, macrophage-capping protein, and growth/differentiation factor 11. Furthermore, the differential expressional levels of partial proteins (cyclin-dependent kinase 2 and caspase 9) were confirmed by Western blot analysis.Thus, this work effectively provided useful protein-related information to facilitate further investigation of the mechanisms underlying EBV infection and pathogenesis.

인체 위암세포에서 고삼의 세포사멸효과 (Effects of Apoptosis of Sophorae Radix on Human Gastric Adenocarcinoma cells)

  • 임보라;이희정;김민철;김형우;김병주
    • 한국한의학연구원논문집
    • /
    • 제18권1호
    • /
    • pp.85-92
    • /
    • 2012
  • Objective : The purpose of this study was to investigate the anti-cancer effects of Sophorae Radix and the effects of 5-Fluorouracil (5-FU) in human gastric adenocarcinoma cells (AGS). Method : We used human gastric adenocarcinoma cell line, AGS cells. We examined cell death by MTT assay and caspase 3 assay with Sophorae Radix. To examine the inhibitory effects of Sophorae Radix, cell cycle (sub G1) analysis was done the AGS cells after three days with Sophorae Radix. The reversibility of Sophorae Radix was examined on one day to five days treatment with 100 ${\mu}g/ml$ Sophorae Radix. Result : Sophorae Radix inhibited the growth of AGS cells in a dose-dependent fashion. Also we showed that Sophorae Radix induced apoptosis in AGS cells by MTT assay, caspase 3 assay and sub-G1 analysis. Sophorae Radix combined with 5-FU markedly inhibited the growth of AGS cells compared to Sophorae Radix or 5-FU alone. After 3 days treatment of AGS cells with Sophorae Radix, the fraction of cells in sub-G1 phase was much higher than that of the control group. Conclusion : Our findings provide insight into unraveling the effects of Sophorae Radix in human gastric adenocarcinoma cells and developing therapeutic agents against gastric cancer.

A Benzylideneacetophenone Derivative Induces Apoptosis of Radiation-Resistant Human Breast Cancer Cells via Oxidative Stress

  • Park, Jeong Eon;Piao, Mei Jing;Kang, Kyoung Ah;Shilnikova, Kristina;Hyun, Yu Jae;Oh, Sei Kwan;Jeong, Yong Joo;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.404-410
    • /
    • 2017
  • Benzylideneacetophenone derivative (1E)-1-(4-hydroxy-3-methoxyphenyl) hept-1-en-3-one (JC3) elicited cytotoxic effects on MDA-MB 231 human breast cancer cells-radiation resistant cells (MDA-MB 231-RR), in a dose-dependent manner, with an $IC_{50}$ value of $6{\mu}M$ JC3. JC3-mediated apoptosis was confirmed by increase in sub-G1 cell population. JC3 disrupted the mitochondrial membrane potential, and reduced expression of anti-apoptotic B cell lymphoma-2 protein, whereas it increased expression of pro-apoptotic Bcl-2-associated X protein, leading to the cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In addition, JC3 activated mitogen-activated protein kinases, and specific inhibitors of these kinases abrogated the JC3-induced increase in apoptotic bodies. JC3 increased the level of intracellular reactive oxygen species and enhanced oxidative macromolecular damage via lipid peroxidation, protein carbonylation, and DNA strand breakage. Considering these findings, JC3 is an effective therapy against radiation-resistant human breast cancer cells.

Promoting Effect of Hydrogen Peroxide on 1-Methyl-4-phenylpyridinium-induced Mitochondrial Dysfunction and Cell Death in PC12 Cells

  • Lee, Dong-Hee;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권1호
    • /
    • pp.51-58
    • /
    • 2006
  • The promoting effect of hydrogen peroxide ($H_2O_2$) against the cytotoxicity of 1-methyl-4-phenylpyridinium ($MPP^+$) in differentiated PC12 cells was assessed by measuring the effect on the mitochondrial membrane permeability. Treatment of PC12 cells with $MPP^+$ resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. Addition of $H_2O_2$ enhanced the $MPP^+-induced$ nuclear damage and cell death. Catalase, Carboxy-PTIO, Mn-TBAP, N-acetylcysteine, cyclosporin A and trifluoperazine inhibited the cytotoxic effect of $MPP^+$ in the presence of $H_2O_2$. Addition of $H_2O_2$ promoted the change in the mitochondrial membrane permeability, ROS formation and decrease in GSH contents due to $MPP^+$ in PC12 cells. The results show that the $H_2O_2$ treatment promotes the cytotoxicity of $MPP^+$ against PC12 cells. $H_2O_2$ may enhance the $MPP^+$-induced viability loss in PC12 cells by promoting the mitochondrial membrane permeability change, release of cytochrome c and subsequent activation of caspase-3, which is associated with the increased formation of ROS and depletion of GSH. The findings suggest that $H_2O_2$ as a promoting agent for the formation of mitochondrial permeability transition may enhance the neuronal cell injury caused by neurotoxins.

Bee Venom Suppresses Ischemia-induced Increment of Apoptosis and Cell Proliferation in Hippocampal Dentate Gyrus

  • Lim Baek Vin;Lee Choong Yeol;Kang Jin Oh;Kim Chang Ju;Cho Sonhae
    • 동의생리병리학회지
    • /
    • 제18권1호
    • /
    • pp.236-242
    • /
    • 2004
  • Cerebral ischemia resulting from transient or permanent occlusion of cerebral arteries leads to neuronal cell death and eventually causes neurological impairments. Bee venom has been used for the treatment inflammatory disease. In the present study, the effects of bee venom on apoptosis and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils were investigated using immunohistochemistry for cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), caspase-3, and 5-bromo-2'-deoxyuridine (BrdU). It was shown that apoptotic cell death and cell proliferation in the hippocampal dentate gyrus were significantly increased following transient global ischemia in gerbils and that treatment of bee venom suppressed the ischemia-induced increase in apoptosis and cell proliferation in the dentate gyrus. The present results also showed that 1 mg/kg bee-venom treatment suppressed the ischemia-induced increasing apoptosis, cell proliferation, and COX-2 expression in the dentate gyrus. It is possible that the suppression of cell proliferation is due to the reduction of apoptotic cell death by treatment of bee venom. In the present study, bee venom was shown to prosses anti-apoptotic effect in ischemic brain disease, and this protective effect of bee venom against ischemia-induced neuronal cell death is closely associated with suppression on caspase-3 expression.

Anti-fatigue effect of fermented porcine placenta through the regulation of fatigue-associated inflammatory cytokines

  • Nam, Sun-Young;Go, Ji-Hyun;Lee, Mikyung;Kim, Jongbae;Jeong, Hyein;Lee, Won Kyung
    • 셀메드
    • /
    • 제6권2호
    • /
    • pp.13.1-13.7
    • /
    • 2016
  • Fatigue is a common complaint and affects the quality of life in modern people. Physical stress may induce activation of certain immune cells. Fermented porcine placenta (FPP) has been used to alleviate fatigue. Inflammatory cytokines are produced by physical stress and results in symptoms of fatigue. However, the role of FPP on fatigue-associated inflammatory cytokine production has not been elucidated yet. Thus, we estimated the anti-fatigue effect of FPP and its active components, leucine (Leu) and lysine (Lys) in activated RAW264.7 macrophages and forced swimming test (FST) fatigue animal model. Pretreatment with FPP, Leu, or Lys significantly inhibited the lipopolysaccharide (LPS)-induced tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 production without inducing cytotoxicity on LPS-stimulated RAW264.7 macrophages. FPP, Leu, or Lys inhibited the production of nitric oxide and downregulated the expression of inducible nitric oxide synthase on LPS-stimulated RAW264.7 macrophages. Furthermore, caspase-1 activities increased by LPS were significantly reduced by FPP, Leu, or Lys. In the FST, inflammatory cytokine levels of the mice administrated with FPP, Lys, and Leu were significantly reduced compared with the control group at 21 days. Collectively, these results show that anti-fatigue effect of FPP and its active components, Leu and Lys might be derived from the down-regulating of inflammatory mediators.

Fucoidan attenuates 6-hydroxydopamine-induced neurotoxicity by exerting anti-oxidative and anti-apoptotic actions in SH-SY5Y cells

  • Kim, Myung-Hwan;Namgoong, Hoon;Jung, Bae-Dong;Kwon, Myung-Sang;Choi, Yeon-Shik;Shin, Taekyun;Kim, Hyoung-Chun;Wie, Myung-Bok
    • 대한수의학회지
    • /
    • 제57권1호
    • /
    • pp.1-7
    • /
    • 2017
  • Parkinson's disease (PD) is an irreversible neurological disorder with related locomotor dysfunction and is characterized by the selective loss of nigral neurons. PD can be experimentally induced by 6-hydroxydopamine (6-OHDA). It has been reported that reactive oxygen species, which deplete endogenous glutathione (GSH) levels, may play important roles in the dopaminergic cell death characteristic of PD. Fucoidan, a sulfated algal polysaccharide, exhibits anti-inflammatory and anti-oxidant actions. In this study, we investigated whether fucoidan can protect against 6-OHDA-mediated cytotoxicity in SH-SY5Y cells. Cytotoxicity was evaluated by using MTT and LDH assays. Fucoidan alleviated cell damage evoked by 6-OHDA dose-dependently. Fucoidan reduced the number of apoptotic nuclei and the extent of annexin-V-associated apoptosis, as revealed by DAPI staining and flow cytometry. Elevation of lipid peroxidation and caspase-3/7 activities induced by 6-OHDA was attenuated by fucoidan, which also protected against cytotoxicity evoked by buthionine-sulfoximine-mediated GSH depletion. Reduction in the glutathione/glutathione disulfide ratio induced by 6-OHDA was reversed by fucoidan, which also inhibited 6-OHDA-induced disruption of mitochondrial membrane potential. The results indicate that fucoidan may have protective action against 6-OHDA-mediated neurotoxicity by modulating oxidative injury and apoptosis through GSH depletion.