References
- Trends Neurosci v.22 Pathobiology of ischaemic stroke: an integrated view Dirnagl, U.;Iadecola, C.;Moskowitz, M.A. https://doi.org/10.1016/S0166-2236(99)01401-0
- Brain Res Rev v.39 Cerebral ischemia and trauma- different etiologies yet similar mechanisms: neuroprotective opportunities Leker, R.R.;Shohami, E. https://doi.org/10.1016/S0165-0173(02)00157-1
- Int Rev Exp Pathol v.32 Apoptosis: mechanisms and roles in pathology Arends, M.J.;Wyllie, A.H.
- Annu Rev Immunol v.10 Apoptosis and programmed cell death in immunity Cohen. J.J.;Duke, R.C.;Fadok, V.A.;Sellins, K.S. https://doi.org/10.1146/annurev.iy.10.040192.001411
- Science v.267 Apoptosis in the pathogenesis and treatment of disease Thompson CB https://doi.org/10.1126/science.7878464
- Methods Cell Biol v.46 Anatomical methods in cell death Kerr, J.F.;Gobe, G.C.;Winterford, C.M.;Harmon, B.V. https://doi.org/10.1016/S0091-679X(08)61921-4
- Neurosurgery v.42 Apoptosis in neurological disease Savitz, S.I.;Rosenbaum, D.M. https://doi.org/10.1097/00006123-199803000-00026
- Int Rev Cytol v.68 Cell death: the significance of apoptosis Wyllie, A.H.;Kerr, J.F.;Currie, A.R. https://doi.org/10.1016/S0074-7696(08)62312-8
- J Magn Reson Imaging v.18 Pain dynamics observed by functional magnetic resonance imaging: differential regression analysis technique Cho, Z.H.;Son, Y.D.;Kang, C.K.;Han, J.Y.;Wong, E.K.;Bai, S.J. https://doi.org/10.1002/jmri.10368
- Am J Pathol Mechanisms of Apoptosis Reed, J.C.
- Biochem J v.326 Caspases: the executioners of apoptosis Cohen GM https://doi.org/10.1042/bj3260001
- Nature v.410 Neurogenesis in the adult is involved in the formation of trace memories Shors, T.J.;Miesegaes, G.;Beylin, A.;Zhao, M.;Rydel, T.G.
- Nat Med v.4 Neurogenesis in the adult human hippocampus Eriksson, P. S.;Perfilieva, E.;Bjok-Eriksson, T.;Alborn, A. M.;Nordborg, C.;Peterson, D.A.;Gage, F.H. https://doi.org/10.1038/3305
- J Neurobiol v.36 Multipotent progenitor cells in the adult denate gyrus Gage, F.H.;Kempermann, G.;Palmer, T.D.;Peterson, D.A.;Ray, J. https://doi.org/10.1002/(SICI)1097-4695(199808)36:2<249::AID-NEU11>3.0.CO;2-9
- Proc Natl Acad Sci USA v.95 Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress Gould, E.;Tanapat, P.;McEwen, B.S.;Flugge, G.;Fuchs, E. https://doi.org/10.1073/pnas.95.6.3168
- J Neurosci v.16 Neurogenesis in the dentate gyrus of the adult rat, age-related decrease of neuronal progenitor proliferation Kuhn, H.G.;Dickinson-Anson, H.;Gage, F.H. https://doi.org/10.1523/JNEUROSCI.16-06-02027.1996
- Nat Neurosci v.2 Learning enhances adult neurogenesis in the hippocampal formation Gould, E.;Beylin, A.;Tanapat, P.;Reeves, A.;Shors, T.J. https://doi.org/10.1038/6365
- J Neurosci v.18 Experience- induced neurogenesis in the senescent dentate gyrus Kempermann, G.;Kuhn, H.G.;Gage, F.H. https://doi.org/10.1523/JNEUROSCI.18-09-03206.1998
- Nature v.410 Neurobiology: New memories from new neurons Macklis JD https://doi.org/10.1038/35066661
- Eur J Neurosci v.12 Mini-Review: In vivo neurogenesis in the adults brain: regulation and functional implications Fuchs, E.;Gould, E. https://doi.org/10.1046/j.1460-9568.2000.00130.x
- Proc Natl Acad Sci USA v.96 Running enhances neurogenesis, learning and long-term potentiation in mice van Praag, H.;Christie, B.R.;Sejnowski, T.J.;Gage, F.H. https://doi.org/10.1073/pnas.96.23.13427
- Nat Neurosci v.2 Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus van Praag, H.;Kempermann, G.;Gage, F.H. https://doi.org/10.1038/6368
- J Neurosci v.18 Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils Liu, J.;Solway, K.;Messing, R.O.;Sharp, F.R. https://doi.org/10.1523/JNEUROSCI.18-19-07768.1998
- J Neurosci v.17 Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus Parent, J.M.;Yu, T.W.;Leibowitz, R.T.;Geschwind, D.H.;Sloviter, R.S.;Lowenstein, D.H. https://doi.org/10.1523/JNEUROSCI.17-10-03727.1997
- Sci Med v.1 Selective inhibition of cyclooxygenase 2 Needleman, P.;Isakson, P.C.
- Annu Rev Pharmacol Toxicol v.38 Cyclooxygenases 1 and 2 Vane, J.R.;Bakhle, Y.S.;Botting, R.M. https://doi.org/10.1146/annurev.pharmtox.38.1.97
- Stroke v.29 Expression and vascular effects of cyclooxygenase-2 in brain Brian, J.E. Jr.;Moore, S.A.;Faraci, F.M. https://doi.org/10.1161/01.STR.29.12.2600
- Cancer Res v.57 Sulindac sulfone inhibits azoxymethane- induced colon carcinogenesis in rats without reducing prostaglandin levels Piazza, G.A.;Alberts, D.S.;Hixson, L.J.;Paranka, N.S.;Li, H.;Finn, T.;Bogert, C.;Guillen, J.M.;Brendel, K.;Gross, P.H.;Sperl, G.;Ritchie, J.;Burt, R.W.;Ellsworth, L.;Ahnen, D.J.;Pamukcu, R.
- Neurosci Lett v.308 Visceral antinociception produced by bee venom stimulation of the Zhongwan acupuncture point in mice: role of alpha(2) adrenoceptors Kwon, Y.B.;Kang, M.S.;Han, H.J.;Beitz, A.J.;Lee, J.H. https://doi.org/10.1016/S0304-3940(01)01989-9
- J Vet Med Sci v.65 Acupoint stimulation using bee venom attenuates formalin-induced pain behavior and spinal cord fos expression in rats Kim, H.W.;Kwon, Y.B.;Ham, T.W.;Roh, D.H.;Yoon, S.Y.;Lee, H.J.;Han, H.J.;Yang, I.S.;Beitz, A.J.;Lee, J.H. https://doi.org/10.1292/jvms.65.349
- Pain v.66 The bee venom test: a new tonic-pain test Lariviere, W.R.;Melzack, R. https://doi.org/10.1016/0304-3959(96)03075-8
- Am J Chin Med v.31 Acupuncture modulates expressions of nitric oxide synthase and c-Fos in hippocampus after transient global ischemia in gerbils Kang, J.E.;Lee, H.J.;Lim, S.;Kim, E.H.;Lee, T.H.;Jang, M.H.;Shin, M.C.;Lim, B.V.;Kim, Y.J.;Kim, C.J. https://doi.org/10.1142/S0192415X03001235
- Neurosci Lett v.297 Acupuncture increases cell proliferation in dentate gyrus after transient global ischemia in gerbils Kim, E.H.;Kim, Y.J.;Lee, H.J.;Huh, Y.;Chung, J.H.;Seo, J.C.;Kang, J.E.;Lee, H.J.;Yim, S.V.;Kim, C.J. https://doi.org/10.1016/S0304-3940(00)01656-6
- Pain v.52 The distribution of brain-stem and spinal cord nuclei associated with different frequencies of electroacupuncture analgesia Lee, J.H.;Beitz, A.J. https://doi.org/10.1016/0304-3959(93)90109-3
- Neuroreport v.5 C-fos expression in the hypothalamo-pituitary system induced by electroacupunc-ture or noxious stimulation Pan, B.;Castro-Lopes, J.M.;Coimbra, A. https://doi.org/10.1097/00001756-199408150-00027
- Radiology v.212 Central nervous pathway for acupuncture stimulation: localization of processing with functional MR imaging of the brain--preliminary experience Wu, M.T.;Hsieh, J.C.;Xiong, J.;Yang, C.F.;Pan, H.B.;Chen, Y.C.;Tsai, G.;Rosen, B.R.;Kwon, K.K. https://doi.org/10.1148/radiology.212.1.r99jl04133
- J Neurotrauma. v.7 Caspase pathways, neuronal apoptosis, and CNS injury Eldadah, B.A.;Faden, A.I.
- Neurochem Int v.35 Recent advances on neuronal caspases in development and neurodegeneration Marks, N.;Berg, M.J. https://doi.org/10.1016/S0197-0186(99)00061-3
- J Neurosci Res v.65 Multiple caspases are involved in beta-amyloid- induced neuronal apoptosis Allen, J.W.;Eldadah, B.A.;Huang, X.;Knoblach, S.M.;Faden, A.I. https://doi.org/10.1002/jnr.1126
- J Neurosci v.18 Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia Chen, J.;Nagayama, T.;Jin, K.;Stetler, R.A.;Zhu, R.L.;Graham, S.H.;Simon, R.P. https://doi.org/10.1523/JNEUROSCI.18-13-04914.1998
- Brain Res Mol Brain Res v.42 Focal cerebral ischaemia increases the levels of several classes of heat shock proteins and their corresponding mRNAs Wagstaff, M.J.;Collaco-Moraes, Y.;Aspey, B.S.;Coffin, R.S.;Harrison, M.J.;Latchman, D.S.;de Belleroche, J.S. https://doi.org/10.1016/S0169-328X(96)00127-1
- J Neurosci v.21 Specific caspase pathways are activated in the two stages of cerebral infarction Benchoua, A.;Guegan, C.;Couriaud, C.;Hosseini, H.;Sampaio, N.;Morin, D.;Onteniente, B.
- J Clin Invest v.101 Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury Cheng, Y.;Deshmukh, M.;D'Costa, A.;Demaro, J.A.;Gidday, J.M.;Shah, A.;Sun, Y.;Jacquin, M.F.;Johnson, E.M.;Holtzman, D.M. https://doi.org/10.1172/JCI2169
- Arch Pharm Res v.26 Inhibition of COX-2 activity and proinflammatory cytokines (TNF-alpha and IL-1beta) production by water-soluble sub-fractionated parts from bee(Apis mellifera) venom Nam, K.W.;Je, K.H.;Lee, J.H.;Han, H.J.;Lee, H.J.;Kang, S.K.;Mar, W. https://doi.org/10.1007/BF02976695