• Title/Summary/Keyword: Caspase 1

Search Result 1,285, Processing Time 0.029 seconds

The Effect of Millettia Reticulatas on the Proliferation Inhibition of Human Uterine Leiomyoma Cell and Expression of Apoptosis (계혈등(鷄血藤)이 자궁근종세포(子宮筋腫細胞)의 증식억제(增殖抑制) 및 세포자멸사에 미치는 영향)

  • Lee, Hwa-Kyung;Baek, Seung-Hee;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.3
    • /
    • pp.135-149
    • /
    • 2006
  • Purpose : This study was aimed to investigate the inhibitory effect of Millettia Reticulatas on the proliferation of human uterine leiomyoma cells and the expression of gene related the mechanism of cell apoptosis. Methods : We counted the number of death cells treated with indicated concentration of Millettia Reticulatas and investigated cell death rate by MTS assay. Furthermore, flow cytometry analyis and DNA fragmentation assay were used to dissect between necrosis and apoptosis. and then we observed the differential gene expression by western blot analysis. Results : 1) The inhibitory effect on the growth of uterine leiomyoma cell treated with Millettia Reticulatas was increased in a concentration proportional. 2) The result of flow cytometry analysis. subG1 phase arrest related3 cell apoptosis was investigated 23.49% in uterine leiomyoma cell treated Millettia Reticulatas and showed the fession of proportional concentration. 3) The gene expression of p27, p53, p21, p16 related cell cycle was increased according to increasing concentration but cyclin E was none exchanged. 4) The character of apoptosis, DNA fragmentation was significantly observed the fession of proportional concentration. 5) The expression of pro-caspase3 and PARP were decreased dependent on treatment concentration. Conclusion : This study showed that Millettia Reticulatas have the inhibitory effect on the proliferation of human uterine leiomyoma cell and the effect was related with apoptosis. The apoptotic mechanism was observed that the gene expression of p27, p53, p21, p16 related cell cycle was increased according to increasing treatment concentration, induced G1 phase arrest and finally cell death was occurred. The decreased expression of pro-caspase 3 and PARP were noted that apoptosis was related with caspase pathway.

  • PDF

Mechanism Underlying NaF-Induced Apoptosis in Human Oral Squamous Cell Carcinoma

  • Hur, Young-Joo;Kim, Do-Kyun;Lee, Seung-Eun;Kim, In-Ryoung;Jeong, Na-Young;Kim, Ji-Young;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.35 no.2
    • /
    • pp.51-60
    • /
    • 2010
  • Few studies have evaluated the apoptosis-inducing efficacy of NaF on cancer cells in vitro but there has been no previous investigation of the apoptotic effects of NaF on human oral squamous cell carcinoma cells. In this study, we have investigated the mechanisms underlying the apoptotic response to NaF treatment in the YD9 human squamous cell carcinoma cell line. The viability of YD9 cells and their growth inhibition were assessed by MTT and clonogenic assays, respectively. Hoechst staining, DNA electrophoresis and TUNEL staining were conducted to detect apoptosis. YD9 cells were treated with NaF, and western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, and MMP and proteasome activity assays were performed sequentially. The NaF treatment resulted in a time- and dose-dependent decrease in YD9 cell viability, a dose-dependent inhibition of cell growth, and the induction of apoptotic cell death. The apoptotic response of these cells was manifested by nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, a significant shift of the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-3, PARP, Lamin A/C and DFF45 (ICAD). Furthermore, NaF treatment resulted in the downregulation of G1 cell cyclerelated proteins, and upregulation of p53 and the Cdk inhibitor $p27^{KIP1}$. Taken collectively, our present findings demonstrate that NaF strongly inhibits YD9 cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via mitochondrial and caspase pathways.

Induction of the apoptosis of HL -60 leukemia cells by Scytosiphon lomentaria

  • Kim, Sang-Chul;Park, Soo-Young;Hyoun, Jae-Hee;Kang, Ji-Hoon;Lee, Young-Ki;Park, Deok-Bae;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.81-81
    • /
    • 2003
  • The present study was taken to examine the inhibitory effect of extracts of Scytosiphon lomentaria, a marine alga growing in Jeju Island, on the growth of cancer cells and to develop an anti-cancer agent using components of S. lomemtaria. The effect was observed by the measurement of metabolic activity using colorimetric 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. In results, crude extract of this alga markedly inhibited the growth of leukemia cell lines such as HL-60 and KG-1, but could scarcely inhibit the growth of normal cells (HEL299) and adenocarcinoma cells (SNU-16 and HCT-I5). When HL-60 cells were treated with the extract, DNA fragmentation and the increase of proportion of sub-G1 hypodiploid cells were observed. Therefore, the inhibitory effect of S. lomemtaria on the growth of HL-60 cells seems to arise from the induction of apoptosis. In order to understand the mechanism of apoptosis inducton by S. lomemtaria, we examined the changes of Bcl-2 and Bax expression. The extract reduced Bcl-2, an anti-apoptotic protein, but increased Bax, a pro-apoptotic protein in a dose-dependent manner. When we examined the activation of caspase-3, an effector of apoptosis, the expression of active form(19 kDa) of caspase-3 was increased and the increase of their activities was demonstrated by the cleavage of poly(ADP-ribose)polymerase, a substrate of caspase-3, to 85 kDa. The results indicate that extract of S. lomentaria induces the apoptosis of HL-60 cells via the down-regulation of Bc1-2 and the activation of caspases.

  • PDF

Anticancer Potential of an Ethanol Extract of Saussurea Involucrata against Hepatic Cancer Cells in vitro

  • Byambaragchaa, Munkhzaya;Cruz, Joseph Dela;Kh, Altantsetseg;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7527-7532
    • /
    • 2014
  • Saussurea involucrata is a Mongolian medicinal plant well known for its effects in promoting blood circulation, and anti-inflammation and analgesic functions. Earlier studies reported that Saussurea involucrata has anticancer activity. The purpose of this study was to confirm the anticancer activity of an ethanol extract of Saussurea involucrata against hepatic cancer and elucidate its mechanisms of action. Hepatocellular carcinoma cells were tested in vitro for cytotoxicity, AO/EB staining for apoptotic cells, apoptotic DNA fragmentation and cell cycle distribution in response to Saussurea involucrata extract (SIE). The mRNA expression of caspase-3,-9 and Cdk2 and protein expression of caspase-3,-9, PARP, XIAP, Cdk2 and p21 were analyzed through real time PCR and Western blotting. Treatment with SIE inhibited HepG2 cell proliferation dose- and time-dependently, but SIE only exerted a modest cytotoxic effect on a viability of Chang human liver cells. Cells exposed to SIE showed typical hallmarks of apoptotic cell death. Cell cycle analysis revealed that SIE caused G1-phase arrest in HepG2 cells. In conclusion, Saussurea involucrata ethanol extract has potential cytotoxic and apoptotic effects on human hepatocellular carcinoma cells. Its mechanism of action might be associated with the inhibition of DNA synthesis, cell cycle (G1) arrest and apoptosis induction through up-regulation of the protein expressions of caspase-3,-9 a nd p21, degradation of PARP and down-regulation of the protein expression of Cdk2 and XIAP.

The neuroprotective effects of Nokyongdaebo-tang(Lurongdabutang) treatment in pathological Alzheimer's disease model of neural tissues (Alzheimer's Disease 병태모델에서 녹용대보탕(鹿茸大補湯)의 신경세포 보호효과)

  • Cheong, Myong-Hee;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.2
    • /
    • pp.1-17
    • /
    • 2009
  • Objectives : Alzheimer's disease(AD) is the most common form of dementia, which is characterized by progressive deterioration of memory and higher cortical functions that ultimately results in total degradation of intellectual and mental activities. Nokyongdaebo-tang(Lurongdabutang) has been usually used for the treatment for the deficiency syndrome dementia and amnesia. This experiment was designed to investigate the effect of the Nokyongdaebo-tang(Lurongdabutang) hot water extract on pathological AD model. Methods : The effects of the Nokyongdaebo-tang(Lurongdabutang) hot water extract on cultured spinal cord cells induced by ${\beta}$-amyloid were investigated. The effects of the Nokyongdaebo-tan(Lurongdabutang) hot water extract on the memory deficit mice induced by scopolamine were investigated. Results : 1. ${\beta}$-amyloid treatment on cultured spinal cord cells increased both GFAP-staining intensity of astrocytes and caspase 3 immunoreactivity on cultured cells. Then, Nokyongdaebo-tang(Lurongdabutang) treatment reduced the labeling intensity for both GFAP and caspase 3 proteins in culture cells. 2. Scopolamine treatment into mice increased levels of GFAP-positive astrocytes and caspase 3-labeled cells of the hippocampal subfields dentate hilar region, CA3 and CA1 area. In vivo administration of Nokyongdaebo-tang(Lurongdabutang) attenuated labeling intensity for those two proteins in the same hippocampal areas. Similar effects were observed by the treatment of galanthamine, an inhibitor of acetylcholinesterase. Conclusions : This experiment shows that the Nokyongdaebo-tang(Lurongdabutang) may play a protective role in damaged neural tissues. Since neuronal damage seen in degenerative brains such as AD are largely unknown, the current data may provide possible insight into therapeutic strategies for AD treatments. Nokyongdaebo-tang(Lurongdabutang) might be effective for the prevention and treatment of AD.

  • PDF

Snake Venom from Vipers Lebetina Turanica Inhibits Tumor in a PC-3 Cell Xenograft Model and PC-3 Cell Growth in Vitro (Vipera Lebetina Turanica 사독의 PC-3 세포성장 억제)

  • Kang, Jun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.24 no.2
    • /
    • pp.1-14
    • /
    • 2007
  • 목적 : 이 연구는 Vipera lebetina turanica의 사독약침파(蛇毒藥鍼波)(Snake venom toxin, SVT)이 in vitro에서 $NF-{\kappa}B$의 활성억제와 apoptosis 관련 단백질의 발현 조절을 통하여 세포자멸사(Apoptosis)를 유도하는지 in vivo에서 또한 전립선 암세포주인 PC-3 세포의 성장을 억제하는지 살펴보고자 하였다. 방법 : SVT를 처리한 후 PC-3의 성장억제를 관찰하기 위해 WST-1 assay, CCK-8 assay를 시행하였고,Apoptosis evaluation에는 DAPI, TUNEL staining assay를 시행하였으며,Apoptosis regulatory proteins의 변화 관찰에는 western blot analysis를 시행하였고,apoptosis와 연관된 $NF-{\kappa}B$의 활성 변화를 관찰하기 위해 EMSA시행하였으며,SVT의 핵내이동을 관찰하기 위해 Immunofluorescence Staining, Confocal immunocytochemistry를 시행하였으며,전립암세포의 종양형성에는 흉선을 제거한 쥐에 Tumorigenecity study를 시행하였다. 결과 : PC-3 세포에 SVT를 처리한 후,전립선 암세포의 성장,Apoptosis의 유발,Apoptosis관련 단백질의 발현,$NF-{\kappa}B$의 활성,SVT의 PC-3세포 핵내 이동여부 및 흉선제거 후 PC-3 세포를 이식한 쥐의 종양형성과정에 미치는 영향을 관찰하여 다음과 같은 결과를 얻었다. 1. PC-3 세포에서 SVT를 처리한 후 세포성장이 억제되고,세포자멸사가 유도되며,조절인자인 p53, caspase-3, -9는 증가되었고,Bcl-2는 감소되었다. 2. PC-3 세포에서 SVT를 처리한 후 $NF-{\kappa}B$의 활성이 유의하게 감소되었다. 3. DAPI로 염색된 상태에서 SVT가 PC-3 세포의 핵내로 이통되는 것이 관찰되었다. 4. 흉선제거 후 전립선 암세포주를 이식한 쥐에서 SVT를 피내로 주입한 결과 전립선암의 크기와 무게가 유의하게 감소하였다. 결론 : 이상의 결과는 SVT가 $NF-{\kappa}B$의 활성 억제를 통하여 인간 전립선암세포주인 PC-3의 세포자멸사를 유발함으로써 증식억제 효과가 있음을 입증한 것이며,이를 재확인한 생체 연구에서의 긍정적인 결과는 향후 SVT의 전립선암의 예방과 치료에 대한 효과적인 치료제 개발에 초석이 될 것으로 기대된다.

  • PDF

Dose-dependent Effects of Bee Venom Acupuncture on MPTP-induced Mouse Model of Parkinson's Disease (MPTP로 유발된 파킨슨병 Mouse 모델에 대한 봉약침의 농도의존적 효과)

  • Jun, Hyung-Joon;Kim, Yong-Suk
    • Journal of Acupuncture Research
    • /
    • v.27 no.5
    • /
    • pp.59-68
    • /
    • 2010
  • 목적 : 최근 한의학에서 널리 사용되며, 신경계 질환에도 응용되고 있는 봉약침의 농도의존적 효과를 알아보기 위하여, 대표적인 신경 퇴행성 질환인 파킨슨병의 동물모델을 통해 세포보호효과와 세포사멸 및 신경염증 기전을 관찰하였다. 방법 : C57BL/6 mice에 신경독소인 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine(MPTP)를 4번 복강내 주입하여 중뇌의 흑질 도파민 신경세포를 파괴하여 Parkinson 질병동물 모델을 만든 후, 2개의 군에는 마지막 MPTP 투여 2시간 후에 1차, 그 후로 48시간이 지날 때마다 양측 신수에 각각 0.06mg/kg 농도와 0.6mg/kg 농도의 봉약침을 시행하여 총 4회 시술한 후, 도파민 세포를 측정하는 TH 면역조직 화학법을 통해 세포의 보존 정도를 관찰하고, 세포사멸과 관련된 양상을 확인하기 위하여 Caspase 3, 신경염증과 관련된 양상을 확인하기 위하여 iNOS의 발현여부를 면역 조직화학법을 이용하여 관찰하였다. 결과 : 관찰결과 MPTP 투여 후 MPTP 투여군의 흑질의 도파민 세포 수는 감소하였으나 0.6mg/kg 봉약침을 투여한 경우에는 유의성 있게 세포 수가 유지되었다. Caspase-3와 iNOS 발현억제 실험에서 0.6mg/kg 봉약침군은 MPTP 투여군과 0.06mg/kg의 봉약침군과 비교하여 Caspase-3, iNOS 발현을 유의하게 억제하였다. 결론 : 봉약침은 MPTP 투여로 인한 신경세포 손상에 대하여 농도에 따라 세포사멸 기전과 신경염증 기전을 억제함으로 신경세포를 보호하는 것으로 추정되며, 추후 적절한 경혈점 및 최적의 봉약침 농도를 찾는데 지속적인 연구가 필요할 것이다.

Effect of Several Species of the Family Rubiacea on Cytotoxicity and Apoptosis in HL-60 cells

  • Ju Sung-Min;Lee Jun;Choi Ho-Seung;Kim Sung-Hoon;Jeon Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.187-192
    • /
    • 2006
  • Herbal medicines have been utilized to treat a variety of diseases, including cancer. Several species of the family rubiaceae have been reported to have antitumor activity. In this study, we report the cytotoxicity and antitumor activity exhibited dy the methanol extracts prepared from Rubia radix (RRME), Uncaria gambir (UGME) and Oldenlandia diffusa (ODME) (family: Rubiaceae) against human promyleloid leukemia cell line, HL-60. The cytotoxicity of RRME (2~20 ${\mu}g/ml$), UGME (20~200 ${\mu}g/ml$) and ODME (20~200 ${\mu}g/ml$) were assessed dy the MTT reduction assay. IC50 values for RRME, UGME and ODME were 11.0, 99.5 and 106.1 ${\mu}g/ml$, respectively. When the HL-60 cells were treated with RRME (10 ${\mu}g/ml$), UGME (120 ${\mu}g/ml$) and ODME (140 ${\mu}g/ml$) for 24 h, several apoptotic characteristics such as DNA fragmentation and morphologic changes were observed. Furthermore, flow cytometric analysis was peformed to determine the percent of apoptotic cells. The poupulation of sub-G1 hypodiploid cells was increased 37.49% in RRME treatment, 12.49% in UGME treatment and 7.21% in ODME treatment compared with untreated control cells (2.64%). To further confirm apoptotic cell death, we assayed caspase-3, -8 and -9 activities in RRME, UGME and ODME-treated cells. After treatment of RRME, UGME and ODME for 12 h, caspase-3, -8 and -9 activities significantly increased.compared to untreated control cells. These results show that RRME, UGME and ODME induced apoptotic cell death in HL-60 cells and may have a possibility of potential antitumor activities.

ABT-737 ameliorates docetaxel resistance in triple negative breast cancer cell line

  • Hwang, Eunjoo;Hwang, Seong-Hye;Kim, Jongjin;Park, Jin Hyun;Oh, Sohee;Kim, Young A;Hwang, Ki-Tae
    • Annals of Surgical Treatment and Research
    • /
    • v.95 no.5
    • /
    • pp.240-248
    • /
    • 2018
  • Purpose: This study aimed to validate the synergistic effect of ABT-737 on docetaxel using MDA-MB-231, a triple negative breast cancer (TNBC) cell line overexpressing B-cell lymphoma-2 (Bcl-2). Methods: Western blot analysis was performed to assess expression levels of Bcl-2 family proteins and caspase-related molecules. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution was determined by flow cytometry analysis. Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk) was used for pretreatment to assess the role of caspases. Results: Cell viability of MDA-MB-231 after combination treatment with ABT-737 and docetaxel was significantly lower than that after docetaxel or ABT-737 monotherapy based on MTT assay (both P < 0.001), with a combination index of 0.41. The proportion of sub-G1 population after combination treatment was significantly higher than that after docetaxel or ABT-737 monotherapy (P = 0.001, P = 0.003, respectively). Pretreatment with z-VAD-fmk completely restored cell viability of MDA-MB-231 from apoptotic cell death induced by combination therapy (P = 0.001). Although pro-caspase-8 or Bid did not show significant change in expression level, pro-casepase-9 showed significantly decreased expression after combination treatment. Cleaved caspase-3 showed increased expression while poly (ADP-ribose) polymerase cleavage was induced after combination treatment. However, hypoxia-inducible factor 1-alpha and aldehyde dehydrogenase 1 totally lost their expression after combination treatment. Conclusion: Combination of ABT-737 with docetaxel elicits synergistic therapeutic effect on MDA-MB-231, a TNBC cell line overexpressing Bcl-2, mainly by activating the intrinsic pathway of apoptosis. Therefore, adjunct of ABT-737 to docetaxel might be a new therapeutic option to overcome docetaxel resistance of TNBCs overexpressing Bcl-2.

Cellular Effects of Troglitazone on YD15 Tongue Carcinoma Cells

  • Loan, Ta Thi;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.113-118
    • /
    • 2016
  • An FDA approved drug for the treatment of type II diabetes, Troglitazone (TRO), a peroxisome proliferator-activated receptor gamma agonist, is withdrawn due to severe idiosyncratic hepatotoxicity. In the search for new applications of TRO, we investigated the cellular effects of TRO on YD15 tongue carcinoma cells. TRO suppressed the growth of YD15 cells in the MTT assay. The inhibition of cell growth was accompanied by the induction of cell cycle arrest at $G_0/G_1$ and apoptosis, which are confirmed by flow cytometry and western blotting. TRO also suppressed the expression of cell cycle proteins such as cyclin D1, cdk2, cdk4, cyclin B1, cdk1(or cdc2), cyclin E1 and cyclin A. The inhibition of cell cycle proteins was coincident with the up-regulation of $p21^{CIP1/WAF1}$ and $p27^{KIP1}$. In addition, TRO induces the activation of caspase-3 and caspase-7, as well as the cleavage of PARP. Further, TRO suppressed the expressions of Bcl-2 without affecting the expressions of Bad and Bax. Overall, our data supports that TRO induces cell cycle arrest and apoptosis on YD15 cells.