Dose-dependent Effects of Bee Venom Acupuncture on MPTP-induced Mouse Model of Parkinson's Disease

MPTP로 유발된 파킨슨병 Mouse 모델에 대한 봉약침의 농도의존적 효과

  • Jun, Hyung-Joon (Dept. of Acupuncture & Moxibustion, College of Oriental Medicine, Kyung Hee University) ;
  • Kim, Yong-Suk (Dept. of Acupuncture & Moxibustion, College of Oriental Medicine, Kyung Hee University)
  • 전형준 (경희대학교 한의과대학 침구학교실) ;
  • 김용석 (경희대학교 한의과대학 침구학교실)
  • Received : 2010.08.31
  • Accepted : 2010.09.20
  • Published : 2010.10.20

Abstract

목적 : 최근 한의학에서 널리 사용되며, 신경계 질환에도 응용되고 있는 봉약침의 농도의존적 효과를 알아보기 위하여, 대표적인 신경 퇴행성 질환인 파킨슨병의 동물모델을 통해 세포보호효과와 세포사멸 및 신경염증 기전을 관찰하였다. 방법 : C57BL/6 mice에 신경독소인 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine(MPTP)를 4번 복강내 주입하여 중뇌의 흑질 도파민 신경세포를 파괴하여 Parkinson 질병동물 모델을 만든 후, 2개의 군에는 마지막 MPTP 투여 2시간 후에 1차, 그 후로 48시간이 지날 때마다 양측 신수에 각각 0.06mg/kg 농도와 0.6mg/kg 농도의 봉약침을 시행하여 총 4회 시술한 후, 도파민 세포를 측정하는 TH 면역조직 화학법을 통해 세포의 보존 정도를 관찰하고, 세포사멸과 관련된 양상을 확인하기 위하여 Caspase 3, 신경염증과 관련된 양상을 확인하기 위하여 iNOS의 발현여부를 면역 조직화학법을 이용하여 관찰하였다. 결과 : 관찰결과 MPTP 투여 후 MPTP 투여군의 흑질의 도파민 세포 수는 감소하였으나 0.6mg/kg 봉약침을 투여한 경우에는 유의성 있게 세포 수가 유지되었다. Caspase-3와 iNOS 발현억제 실험에서 0.6mg/kg 봉약침군은 MPTP 투여군과 0.06mg/kg의 봉약침군과 비교하여 Caspase-3, iNOS 발현을 유의하게 억제하였다. 결론 : 봉약침은 MPTP 투여로 인한 신경세포 손상에 대하여 농도에 따라 세포사멸 기전과 신경염증 기전을 억제함으로 신경세포를 보호하는 것으로 추정되며, 추후 적절한 경혈점 및 최적의 봉약침 농도를 찾는데 지속적인 연구가 필요할 것이다.

Keywords

References

  1. Varanda EA, Tavares DC. Radioprotection: Mechanism and radioprotective agents including honey bee venom. Venom Anim Toxins. 1998 ; 4(1) : 5-21.
  2. Varanda EA, Monti R, Tavares DC. Inhibitory effect of propolis and bee venom on the mutagencity of some direct - and indirectacting mu tagens. Teratog Carcinog Mutagen. 1999 ; 19(6) : 403-13. https://doi.org/10.1002/(SICI)1520-6866(1999)19:6<403::AID-TCM4>3.0.CO;2-2
  3. Sumikura H, Andersen OK, Drewes, AM, Arendt-Nielsen LA. Comparison of hyperalgesia and neurogenic inflammation induced by melittin and capsaicin in humans. Neurosci Lett. 2003 ; 337(3) : 147-50. https://doi.org/10.1016/S0304-3940(02)01325-3
  4. Nam KW, Je KH, Lee JH, Han HJ, Lee HJ, Kamg SK, Mar W. Inhibition of COX-2 activity and proinflammatory cytokines(TNF- alpha and IL-1beta) production by water-soluble subfractionated parts from bee(Apis Mellifera) venom. Arch Pharm Res. 2003 ; 26(5) : 383-8. https://doi.org/10.1007/BF02976695
  5. Yoon SY, Kim HW, Roh DH, Kwon YB, Jeong TO, Han HJ, Lee HJ, Choi SM, Ryu YH, Beitz AJ, Lee JH. The anti-inflammatory effect of peripheral bee venom stimulation is mediated by central muscarinic type 2 receptors and activation of sympathetic preganglionic neurons. Brain Res. 2005 Jul 12 ; 1049(2) : 210-6. https://doi.org/10.1016/j.brainres.2005.05.020
  6. Kim HW, Kwon YB, Ham TW, Roh DH, Yoon SY, Lee HJ, Han HJ, Yang IS, Beits AJ, Lee JH. Acupoint stimulation using bee venom attenuates formalin-induced pain behavior and spinal cord fos expression in rats. J Vet Med Sci. 2003 ; 65(3) : 349-55. https://doi.org/10.1292/jvms.65.349
  7. Orsolic N, Sver L, Verstovsek S, Terzic S, Basic I. Inhibition of mammary carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. Toxicon. 2003 ; 41(7) : 861-70. https://doi.org/10.1016/S0041-0101(03)00045-X
  8. Tu WC, Wu CC, Hsieh HL, Chen CY, Hsu SL. Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon. 2008 Aug 1 ; 52(2) : 318-29. https://doi.org/10.1016/j.toxicon.2008.06.007
  9. Moon DO, Park SY, Lee KJ, Heo MS, Kim KC, Kim MO, Lee JD, Choi YH, Kim GY. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol. 2007 Aug ; 7(8) : 1092-101. https://doi.org/10.1016/j.intimp.2007.04.005
  10. Kim KW, Shin YS, Kim KS, Chang YC, Park KK, Park JB, Choe JY, Lee KG, Kang MS, Park YG, Kim CH. Suppressive effects of bee venom on the immune responses in collageninduced arthritis in rats. J phymed. 2008 Apr ; 16 : 1-9.
  11. Ma J, Shaw VE, Mitrofanis J. Does melatonin help save dopaminergic cells in MPTP-treated mice? Parkinsonism Relat Disord. 2008 Sep ; 13 : 1-8.
  12. Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol. 2000 ; 62 ; 70.
  13. Ferger B, Leng A, Mura A, Hengerer B, Feldon J. Genetic ablation of tumor necrosis factoralpha( TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem. 2004 ; 89 : 822. https://doi.org/10.1111/j.1471-4159.2004.02399.x
  14. Xu BB, Liu CQ, Gao X, Zhang WQ, Wang SW, Cao YL. Possible mechanisms of the protection of ginsenoside Re against MPTP-induced apoptosis in substantia nigra neurons of Parkinson's disease mouse model. J Asian Nat Prod Res. 2005 Jun ; 7(3) : 215-6, 218. https://doi.org/10.1080/10286020410001690172
  15. Heikkila RE, Hess A, Duvoisin RC. Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science. 1884 ; 224 : 1451-3.
  16. Mochizuki H, Nakamura N, Nishi K, Mizuno Y. Apoptosis induced by i-methyl-4-phenylpyridiumion MPP+) in ventral mesencephalic striatal co-culture in rat. Neurosci Lett. 1994 ; 170 : 191-4. https://doi.org/10.1016/0304-3940(94)90271-2
  17. Spooren WPJM, Gentsch C, Wiessner C. TUNELpositive cells in the substantia nigra of C57BL/6 mice after a single bolus of 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine. Neuroscience. 1998 ; 85 : 649-51. https://doi.org/10.1016/S0306-4522(97)00640-4
  18. Tatton NA, Kish S. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-tr eated mice using terminal deoxylnucleotidyl transferase labeling and acridine orange staining. Neuroscience 1997 ; 77 : 1037-48. https://doi.org/10.1016/S0306-4522(96)00545-3
  19. Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008 Aug ; 29(8) : 357-65. https://doi.org/10.1016/j.it.2008.05.002
  20. Kang JM, Park HJ, Choi YG, Choe IH, Park JH, Kim YS, Lim S. Acupuncture inhibits microglial activation and inflammatory events in the MPTPinduced mouse model. Brain Res. 2007 Feb 2 ; 1131(1) : 211-9.
  21. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S. Inducible nitric oxide synthase stimulates dopaminergic.
  22. Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease. Nat Protoc. 2007 ; 2(1) : 141-51. https://doi.org/10.1038/nprot.2006.342
  23. Salvesen GS, Dixit, VM. Caspases : intracellular signaling by proteolysis. Cell. 1997 ; 91 : 443-6. https://doi.org/10.1016/S0092-8674(00)80430-4
  24. Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB. Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem. 2000 May ; 74(5) : 2213-6.
  25. Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience. 1996 May ; 72(2) : 355-63. https://doi.org/10.1016/0306-4522(95)00578-1
  26. Geng X, Tian X, Tu P, Pu X. Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson's disease. Eur J Pharmacol. 2007 Jun 14 ; 564(1-3) : 66-74. https://doi.org/10.1016/j.ejphar.2007.01.084
  27. He XJ, Nakayama H, Dong M, Yamauchi H, Ueno M, Uetsuka K et al. Evidence of apoptosis in the subventricular zone and rostal migratory stream in the MPTP mouse model of Parkinson disease. J Neuropathol Exp Neurol. 2006 ; 65 : 873-82. https://doi.org/10.1097/01.jnen.0000235115.29440.ce
  28. Kokovay E, Cunningham LA. Bone marrowderived microglia contribute to the neuroinflammatory response and express iNOS in the MPTP mouse model of Parkinson's disease. Neurobiol Dis. 2005 Aug ; 19(3) : 471-8. https://doi.org/10.1016/j.nbd.2005.01.023
  29. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol. 1997 Jan ; 12(1) : 25-31.
  30. Kingsbury AE, Mardsen CD, Foster OJ. DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov Disord. 1998 Nov ; 13(6) : 877-84. Links. https://doi.org/10.1002/mds.870130604
  31. Tatton NA, Maclean-Fraser A, Tatton WG, Perl DP, Olanow CW. A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson's disease. Ann Neurol. 1998 Sep ; 44(3 Suppl 1) : S142-8.
  32. Eberhardt O, Schulz JB. Apoptotic mechanisms and antiapoptotic therapy in the MPTP model of Parkinson's disease. Toxicol Lett. 2003 Apr 4 ; 139(2-3) : 135-51. https://doi.org/10.1016/S0378-4274(02)00428-9
  33. Barcia C, Fernandez Barreiro A, Poza M, Herrero MT. Parkinson's disease and inflammatory changes. Neurotox Res. 2003 ; 5(6) : 411-8. https://doi.org/10.1007/BF03033170
  34. Cohen GM, Caspases: the executioners of apoptosis. Biochem J. 1997 ; 326 : 1-16.
  35. Thomas M, Le WD. Minocycline: neuroprotective mechanisms in Parkinson's disease. Curr Pharm Des. 2004 ; 10(6) : 680.
  36. Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci USA. 1997 Jul 8 ; 94(14) : 7531-6. https://doi.org/10.1073/pnas.94.14.7531
  37. Molina JA, Jimenez-Jimenez FJ, Orti-Pareja M, Navarro JA. The role of nitric oxide in neuro degeneration. Potential for pharmacological intervention. Drugs Aging. 1998 Apr ; 12(4) : 251-9. https://doi.org/10.2165/00002512-199812040-00001
  38. Lariviere WR, Melzack R. The bee venom test: a new tonic-pain test. Pain. 1996 Aug ; 66(2-3) : 271-7. https://doi.org/10.1016/0304-3959(96)03075-8
  39. Hong SJ, Rim GS, Yang HI, Yin CS, Koh HG, Jang MH, Kim CJ, Choe BK, Chung JH. Bee venom induces apoptosis through caspase-3 activation in synovial fibroblasts of patients with rheumatoid arthritis. Toxicon. 2005 Jul ; 46(1) : 39-45. https://doi.org/10.1016/j.toxicon.2005.03.015
  40. Moon DO, Park SY, Choi YH, Kim ND, Lee C, Kim GY. Melittin induces Bcl-2 and caspase- 3-ependent apoptosis through downregulation of Akt phosphorylation in human leukemic U937 cells. Toxicon. 2008 Jan ; 51(1) : 112-20. https://doi.org/10.1016/j.toxicon.2007.08.015