• Title/Summary/Keyword: Caspase 1

Search Result 1,285, Processing Time 0.023 seconds

The Apoptotic Effect of Bee Venom and Melittin on FBS-induced Vascular Smooth Muscle Cells Proliferation (봉약침액과 melittin의 세포고사 효과가 FBS에 의하여 유도되는 혈관 평활근 세포 증식에 미치는 영향)

  • Han, Jae-Choon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.3
    • /
    • pp.91-102
    • /
    • 2006
  • 목적 : 이 연구에서는 FBS에 의하여 유도되는 혈관 평활근 세포 증식에 대한 봉약침액과 Melittin의 세포 고사효과의 영향 및 작용 기전을 살펴보고자 하였다. 방법 : $I{\kappa}Ba$, p-$I{\kappa}Ba$, p-ERK1/2, p-Akt, p53, Bcl-2, Bax 및 active caspase-3는 Western blotting을, $NF-{\kappa}B$는 EMSA와 immunofluorescence staining을 이용하여 측정하였다. 결과 : 1. Melittin은 $NF-{\kappa}B$ 활성에 대하여 $I{\kappa}Ba$의 인산화를 유의하게 익제하고 $I{\kappa}Ba$를 증가시켰으며, $NF-{\kappa}B$의 DNA 결합과 $NF-{\kappa}B$ p50의 핵 내 유입을 유의하게 감소시켰다. 2. Melittin은 $NF-{\kappa}B$ 활성을 증가시키는 물질인 Akt의 인산화를 유의하게 억제하였고, ERK1/2의 인산화도 억제하였다. 3. Melittin은 세포사멸 전구 단백질인 p53, Bax 및 caspase-3의 발현을 유의하게 증가시켰고, 세포사멸억제 단백질인 Bcl-2의 발현은 감소시켰다. 결론 : 이상의 결과는 $NF-{\kappa}B$ 와 Akt 활성을 억제함으로써 혈관평활근세포 증식을 억제하는 효과가 있음을 입증한 것이며, 향후 안전성 연구를 바탕으로 혈관성형술 후 재발성협착증과 동맥경화증의 치료제로 사용될 수 있을 것으로 기대된다.

  • PDF

Gallic acid caused cultured mice TM4 Sertoli cells apoptosis and necrosis

  • Li, Wanhong;Yue, Xiangpeng;Li, Fadi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.629-636
    • /
    • 2019
  • Objective: The study was designed to determine the cytotoxic effect of gallic acid (GA), obtained by the hydrolysis of tannins, on mice TM4 Sertoli cells apoptosis. Methods: In the present study, non-tumorigenic mice TM4 Sertoli cells were treated with different concentrations of GA for 24 h. After treatment, cell viability was evaluated using WST-1, mitochondrial dysfunction, cells apoptosis and necrosis was detected using JC-1, Hoechst 33342 and propidium iodide staining. The expression levels of Cyclin B1, proliferating cell nuclear antigen (PCNA), Bcl-2-associated X protein (BAX), and Caspase-3 were also detected by quantitative real-time polymerase chain reaction and Western-blotting. Results: The results showed that 20 to $400{\mu}M$ GA inhibited viability of TM4 Sertoli cells in a dose-dependent manner. Treatment with $400{\mu}M$ GA significantly inhibited PCNA and Cyclin B1 expression, however up-regulated BAX and Caspase-3 expression, caused mitochondrial membrane depolarization, activated Caspase-3, and induced DNA damage, thus, markedly increased the numbers of dead cells. Conclusion: Our findings showed that GA could disrupt mitochondrial function and caused TM4 cells to undergo apoptosis and necrosis.

(E)-2-Methoxy-4-(3-(4-Methoxyphenyl) Prop-1-en-1-yl) Phenol Suppresses Breast Cancer Progression by Dual-Regulating VEGFR2 and PPARγ

  • Na-Yeon Kim;Hyo-Min Park;Hee Pom Lee;Jin Tae Hong;Do-Young Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.240-248
    • /
    • 2024
  • In cancer treatment, multi-target approach has paid attention to a reasonable strategy for the potential agents. We investigated whether (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) could exert an anticancer effect by dual-regulating VEGFR2 and PPARγ. MMPP showed modulating effects in TNBC type (MDA-MB-231 and MDA-MB-468) and luminal A type (MCF7) breast cancer cell lines. MMPP enhanced PPARγ transcriptional activity and inhibited VEGFR2 phosphorylation. MMPP-induced signaling by VEGFR2 and PPARγ ultimately triggered the downregulation of AKT activity. MMPP exhibited anticancer effects, as evidenced by growth inhibition, inducement of apoptosis, and suppression of migration and invasion. At the molecular level, MMPP activated pro-apoptotic proteins (caspase3, caspase8, caspase9, and bax), while inhibiting the anti-apoptotic proteins (bcl2). Additionally, MMPP inhibited the mRNA expressions of EMT-promoting transcription factors. Therefore, our findings showed molecular mechanisms of MMPP by regulating VEGFR2 and PPARγ, and suggested that MMPP has potential to treat breast cancer.

Effect of Proapoptotic Bcl-2 on Naringenin-induced Apoptosis in Human Leukemia U937 Cells (Naringenin에 의한 인체혈구암세포의 apoptosis 유발에 미치는 pro-apoptotic Bcl-2의 영향)

  • Park, Cheol;Jin, Cheng-Yun;Choi, Tae Hyun;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1118-1125
    • /
    • 2013
  • Naringenin, a naturally occurring citrus flavonone, is a potentially valuable candidate for cancer chemotherapy. However, the cellular and molecular mechanisms responsible for its anticancer activity are largely unknown. In the present study, we attempted to elucidate the mechanisms responsible for naringenin-induced apoptosis in human leukemic U937 cells. We found that naringenin markedly inhibited the growth of U937 cells by decreasing cell proliferation and inducing apoptosis, which was associated with the activation of caspases. A pan-caspase inhibitor, z-VAD-fmk, significantly inhibited naringenin-induced U937 cell apoptosis, indicating that caspases are key regulators of apoptosis in response to naringenin in U937 cells. Although the levels of antiapoptotic Bcl-2 and proapoptotic Bax proteins remained unchanged in naringenin-treated U937 cells, Bcl-2 overexpression attenuated naringenin-induced apoptosis. Furthermore, combined treatment with naringenin and HA14-1, a small-molecule Bcl-2 inhibitor, effectively increased the apoptosis through enhancement of XIAP down-regulation, Bid cleavage, and caspase activation, suggesting that the synergistic effect was at least partially mediated through the death receptor-mediated apoptosis pathway.

Machanism of Cisplatin-induced Apoptosis and Bojungbangam-tang-mediated Anti-apoptotic Effect on Cell Proliferation in Rat Mesangial Cells (Cisplatin과 보정방암탕에 의한 백서 사구체 혈관사이세포의 세포사멸 기전 연구)

  • Ju, Sung Min;Kim, Sung Hoon;Kim, Yeong Mok;Jeon, Byung Hun;Kim, Won Sin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • Cisplatin is a anti-neoplastic agent which is commonly used for the treatment of solid tumor. Cisplatin activates multiple signal transduction pathways involved in the stress-induced apoptosis in a variety of cell types. Previous study reported that cisplatin induces apoptosis through activation of ERK, p38 and JNK in rat mesangial cells, but apoptotic pathway remain known. The present study investigated the apoptotic pathway for cisplatin-indcued apoptosis in rat mesangial cells. cisplatin-induced apoptosis was associated with activation of caspase-3, caspase-8, caspase-9. Caspase-8 inhibition prevented the activation of both caspase-3 and caspase-9. In addition, cisplatin-induced apoptosis increased the expression of Bax, but not the level of Bcl-2. These change of Bax/bcl-2 ratio caused the release of cytochrome c from mitochondria into cytosol. In previous study, the ethanol extract of Bojungbangam-tang (EBJT) inhibited cisplatin-induced apoptosis in rat mesangial cells through inhibition of ERK and JNK activation. However, EBJT did not increase cell proliferation, because it did not prevent cisplatin-induced G2/M phase arrest. These effect of EBJT may be related to p38 activation. Cisplatin-induced G2/M phase arrest are inhibited by treatment with p38 inhibitor and EBJT in rat mesangial cells. Also, p38 inhibition and EBJT treatment on cisplatin-induced G2/M phase arrest are markedly increased the G0/G1 phase and reduced the sub-G1. In conclusion, anti-apoptotic effet of EBJT did not increases cell proliferation, because EBJT did not reduce p38 activation related to cisplatin-induced G2/M phase arrest.

Imyosan induces caspases-mediated apoptosis in human colorectal cancer HCT116 cells (이묘산(二妙散)에 의한 대장암 세포주 HCT116의 Caspases 활성화를 매개로 한 세포사멸)

  • Kim, Sun-Mo;Yun, Hyun-Jeung;Lee, Hyun-Woo;Kim, Pan-Jun;Lee, Chang-Hyun;Park, Won-Hwan;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.14 no.2
    • /
    • pp.21-32
    • /
    • 2006
  • The purpose of this study was to investigate the effect of Imyosan on apoptosis in human colorectal cancer HCT116 cells. Phellodendron amurense Rupr. and Atratylodes lancea D.C. compose Imyosan. First of all, to study the cytotoxic effect of methanol extract of Imyosan (IMS-MeOH) on HCT116 cells, the cells were treated with various concentrations of IMS-MeOH and then cell viability was determined by XTT reduction method. IMS-MeOH reduced viability of HCT116 cells in a dose and time-dependent manner. To confirm the induction of apoptosis, the c1eavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of caspase-3, procaspase-8 and procaspase-9 were examined by western blot analysis. IMS-MeOH decreased procaspase-3, procaspase-8 and procaspase-9 levels in a dose-dependent manner and induced the clevage of PARP. IMS-MeOH triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome c from mitochondria to cytosol. Furthermore, IMS-MeOH also downregulated the anti-apoptotic Bcl-2 and upregulated the pro-apoptotic-Bax. Therefore, these results suggest that IMS-MeOH induced HCT1l6 cell death through the mitochondrial pathway. To explore whether the activities of caspases was required for induction of apoptosis by IMS-MeOH, caspase-3, -8, -9 activity measured by using substrates, respectively. IMS-MeOH increased caspase-3, -8, -9 activity. Co-treatment with inhibitors of caspase-3, -8, -9 and IMS-MeOH significantly blocked IMS-MeOH-triggered apoptosis in HCT1l6 cells. These results suggest that IMS-MeOH induces caspases-mediated apoptosis.

  • PDF

Induction of Apoptosis in Human Colon Carcinoma HCT116 Cells Using a Water Extract of Lepidium virginicum L. (콩다닥냉이 추출물에 의한 HCT116 대장암세포의 사멸 유도에 관한 연구)

  • Chae, Yang-Hui;Shin, Dong-Yeok;Park, Cheol;Lee, Yong-Tae;Moon, Sung-Gi;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.649-659
    • /
    • 2011
  • To examine the anti-cancer effects of Lepidium virginicum L., the anti-proliferative and pro-apoptotic effects of a water extract of L. virginicum leaves (WELVL) and of L. virginicum roots (WELVR) were investigated in HCT116 human colon carcinoma cells. The treatment of HCT116 cells with WELVL and WELVR resulted in the inhibition of growth and morphological changes in a concentration-dependent manner by inducing apoptosis. The growth inhibition and apoptosis induction by WELVR was stronger than that of WELVL thus, we determined that WELVR was the more optimal extract for this study. The increased apoptotic events in HCT116 cells caused by WELVR were associated with an up-regulation of Fas ligand, Bax, and Bad expression, a down-regulation of Bcl-2, Bcl-$_XL$, and Bid expression, and a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\psi}m$). WELVR treatment induced the proteolytic activation of caspase-3, -8, and -9, and the degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, and phospholipase C-${\gamma}1$ (PLC-${\gamma}1$). In addition, apoptotic cell death induced by WELVR was correlated with a down-regulation of inhibitors of the apoptosis protein (IAP) family, such as the X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and cIAP-2. These findings suggest that the WELVR-induced inhibition of cell proliferation is associated with the induction of apoptotic cell death. WELVR may be a potential chemotherapeutic agent for the control of HCT116 human colon carcinoma cells.

Effects of Curcumin on Apoptosis in SW480 Human Colon Cancer Cell Line (Curcumin이 인체대장암세포주인 SW480 cell에서 세포사멸에 미치는 영향)

  • 최옥숙;김우경
    • Journal of Nutrition and Health
    • /
    • v.37 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • Curcumin, a natural compound extracted from rhizomes of Curcuma longa, has been shown to possess potent anti-inflammatory and anti-tumor activity. The mechanism by which curcumin initiates apoptosis remains poorly understood. In this study, we investigated the effects of curcumin on caspase-3 activity and protein expression of procaspase-3, Bcl-2, Bax, total Akt and phosphorylated Akt in SW480 human colon cancer cell. We cultured SW480 cells in the presence of various concentrations (0, 10, 20 or 30 uM) of curcumin. Curcumin inhibited colon cancer cell growth in a dose-dependent manner (p < 0.05). Caspase-3 activity was significantly increased dose-dependently in cells treated with curcumin (p < 0.05), concisely procaspase-3 expression was significantly decreased. Bcl-2 levels were decreased dose-dependently in cells treated with curcumin (p < 0.05), but Ben remained unchanged. In addition, phosphorylated Akt levels and total Akt levels were markedly lower in cells treated with 20 uM of curcumin treatment (p < 0.05), In conclusion, we have shown that curcumin inhibits cell growth and induces apoptosis in SW480 human colon cancer cell lines via Akt signal pathway.

The Water Extract of Boswellia carterii Induces Apoptosis in Human Leukemia HL-60 Cells (유향 물 추출물의 HL-60 혈액암세포에서 세포사멸 유도효과)

  • 박래길;오광록;이광규;문연자;김정훈
    • YAKHAK HOEJI
    • /
    • v.45 no.2
    • /
    • pp.161-168
    • /
    • 2001
  • The possible mechanism of the antiproliferative and apoptotic effects of Boswellia carterri water extract were studied in HL-60 human leukemia cells. The cytotoxicity of HL-60 cells after the treatment of Boswellia carterii water extract showed dose- and time-dependent manner. The apoptotic effect of 300 $\mu$g/ml Boswellia carterii water extract was demonstrated by DNA laddering. The activity of caspase 3-1ike protease was markedly increased in HL-60 cells treated with Boswellia carterii water extract. Furthermore, the level of Bcl-2 was time-dependently reduced, whereas Bax protein level was enhanced by Boswellia carterii water extract treatment. In conclusion, our results suggest that apoptotic effect of Boswellia carterii water extract may partly mediated through activations of caspase-3 activity and Bax expression, and inhibition of Bcl-2 expression.

  • PDF

Protective effect of Korean Red Ginseng against FK506-induced damage in LLC-PK1 cells

  • Lee, Dahae;Kang, Ki Sung;Yu, Jae Sik;Woo, Jung-Yoon;Hwang, Gwi Seo;Eom, Dae-Woon;Baek, Seung-Hoon;Lee, Hye Lim;Kim, Ki Hyun;Yamabe, Noriko
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.284-289
    • /
    • 2017
  • Background: Compound FK506 is an immunosuppressant agent that is frequently used to prevent rejection of solid organs upon transplant. However, nephrotoxicity due to apoptosis and inflammatory response mediated by FK506 limit its usefulness. In this study, the protective effect of Korean Red Ginseng (KRG) against FK506-induced damage in LLC-PK1 pig kidney epithelial cells was investigated. Methods: LLC-PK1 cells were exposed to FK506 with KRG and cell viability was measured. Western blotting and RT-PCR analyses evaluated protein expression of MAPKs, caspase-3, and KIM-1. TLR-4 gene expression was assessed. Caspase-3 activities were also determined. The number of apoptotic cells was measured using an image-based cytometric assay. Results: The reduction in LLC-PK1 cell viability by $60{\mu}M$ FK506 was recovered by KRG cotreatment in a dose-dependent manner. The phosphorylation of p38, p44/42 MAPKs (ERK), KIM-1, cleaved caspase-3, and TLR-4 mRNA expression was increased markedly in LLC-PK1 cells treated with $60{\mu}M$ FK506. However, with the exception of p-ERK, elevated levels of p-p38, KIM-1, cleaved caspase-3, and TLR-4 mRNA expression were significantly decreased after cotreatment with KRG. Activity level of caspase-3 was also attenuated by KRG cotreatment. Moreover, image-based cytometric assay showed that apoptotic cell death was increased by $60{\mu}M$ FK506 treatment, whereas it was decreased after cotreatment with KRG. Conclusion: Taken together, these results suggest that the molecular mechanism of KRG in the FK506-induced nephrotoxicity may lead to the development of an adjuvant for the inhibition of adverse effect FK506 in the kidney.