• Title/Summary/Keyword: Casein hydrolysis

Search Result 68, Processing Time 0.027 seconds

Functional Properties of Bifidobacterium longum and Their Incorporation into Cheese Making Process (비피도박테리움 롱검의 기능성과 치즈 제조에 활용)

  • Kim, Hyoun Wook;Jeong, Seok Geun;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.75-82
    • /
    • 2016
  • Members of the genus Bifidobacterium are prevalent in the human colon and represent up to 90% of all bacteria in fecal samples of breast-fed infants, and 3~5% of adult fecal microbiota. Bifidobacteria produce organic acids, thus reducing the colon pH to a level inhibitory for pathogenic bacteria. They can also detoxify a number of toxic compounds and adhere to the colon mucosa, thus preventing the adherence of pathogens and induction of colon cancer. Recently, we identified a novel Bifidobacterium longum subsp. longum strain, KACC 91563, in a fecal sample of a Korean neonate, and demonstrated its functional properties. We showed that B. longum KACC 91563 alleviates food allergy through mast cell suppression and produces antioxidative and antihypertensive peptides by casein hydrolysis. Dairy products are considered as an ideal food system for the delivery of probiotic cultures to the human gastrointestinal tract. Cheese affords protection to probiotic microbes during gastric transit due to its relatively high pH, more solid consistency, higher fat content, and higher buffering capacity. Incorporation of B. longum KACC 91563 into cheese making is currently under study.

Isolation, Identification, and Characterization of a Keratin-degrading Bacterium Chryseobacterium sp. P1-3

  • Hong, Sung-Jun;Park, Gun-Seok;Jung, Byung Kwon;Khan, Abdur Rahim;Park, Yeong-Jun;Lee, Chang-Hyun;Shin, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.247-251
    • /
    • 2015
  • In this study, a keratin-degrading bacterium was isolated from soil contaminated with feather waste. The isolated strain was identified as Chryseobacterium sp. P1-3 on the basis of the 16S rRNA gene sequence alignment. Chryseobacterium sp. P1-3 is currently used in various biotechnological applications (e.g., in the hydrolysis of poultry feathers). It hydrolyzed the feather meal within 2 days and possesses a high level of keratinase activity (98 U/mL). The keratinase, partially purified from this strain, prefers casein as a substrate and shows optimal activity at a temperature of $30^{\circ}C$ and at a pH of 8.0.

Isolation and Characterization of Flavobacterium johnsoniae from Farmed Rainbow Trout Oncorhynchus mykiss

  • Suebsing, Rungkarn;Kim, Jeong-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 2012
  • Flavobacterium johnsoniae was isolated from farmed rainbow trout Oncorhynchus mykiss in Korea, and its biochemical and molecular characterization was determined. Yellow-pigmented bacterial colonies were isolated from 18 of 64 fish samples (28.1%) on trypticase soy agar plates, and their biochemical profiles were characterized by API 20E and API 20NE test kits. F. johnsoniae was identified by biochemical phenotyping of factors including rapid gliding motility, Gram-negative condition, oxidase- and catalase-positive status, Congo red absorption, nitrate reduction, ${\beta}$-galactosidase production, acid production from glucose, and gelatin and casein hydrolysis. PCR and subsequent sequencing of 16S rRNA confirmed that the yellow-pigmented colonies were most similar to F. johnsoniae. The alignment analysis of 16S rRNA sequences also showed that all 18 rainbow trout isolates had highly similar homologies (97-99% identity). One isolate was selected and named FjRt09. This isolate showed 98% homology with previously reported F. johnsoniae isolates, and in phylogenetic analysis was more closely grouped with F. johnsoniae than with F. psychrophilum, F. columnare, or F. branchiophilum. This is the first report on the occurrence and biochemical characterization of F. johnsoniae isolated from rainbow trout in Korea.

Microbial Production of Yeast Cell Wall Lytic Enzymes (효모세포벽(酵母細胞壁) 용해효소(溶解酵素)의 미생물 생산(生産))

  • Kang, Soon-Young;Lee, Su-Rae;Lee, Chun-Yung
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.97-105
    • /
    • 1977
  • 1) In order to obtain a microbial strain having a strong yeast cell wall lytic activity, about 156 isolates capable of forming clear zones on baker's yeast-peptone-bouillon agar plate were obtained from soil, mud and water samples and a strain K-42 with the highest lytic activity was identified as Bacillus circulans. 2) Effect of carbon sources on the lytic enzyme production by the K-42 strain was in the decreasing order of maltose>glucan>xylose>control in 2-day culture and of lactose>galactose>glucan>control in 3-day culture. Effect of inorganic nitrogen sources was in the decreasing order of ammonium acetate>sodium nitrate>control in 2-day culture and of ammonium chloride>ammonium oxalate>control in 3-day culture, whereas organic nitrogen sources except milk casein showed an increase in 2-day culture and a decrease in 3-day culture. Synergistic effect of carbon sources and nitrogen sources was not observed. 3) The enzyme production by the K-42 strain was greatly affected by pH change of the culture medium, thus a high lytic activity could be maintained by keeping the pH range of $7{\sim}8$ and adding carbon or nitrogen sources. 4) Optimum conditions for the lytic activity of the K-42 strain were obtained at $pH\;7{\sim}8$ and $60^{\circ}C$ and the extent of hydrolysis toward heated yeast cell wall was 65%.

  • PDF

Influences of Protease on the Removal of Protein Soils from Cotton Fabrics -Emphasis on the Characteristics of Enzyme and Soil Substrates- (단백질 분해 효소가 세척에 미치는 영향 -효소와 오염 기질의 특성을 중심으로-)

  • Lee, Jeong Sook;Shim, Yun Jeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.491-505
    • /
    • 1993
  • The influences of protease on the removal of various protein soils from cotton fabrics were studied. The human epidermal stratum corneum, hemoglobin and casein were used as protein soils. The soiled fabrics were denatured by steaming for 30 min. before washing and laundered using Terg-O-Tometer under washing conditions. The removal efficiency was evaluated by analysis of protein on the fabrics before and after washing by means of copper-Folin method. The relations between the removal and the characteristics of protease were discussed. Also the degradation of protein were examined by microscopy. The seperation of human epidermal stratum corneum after hydrolysis was examined by SDS-PAGE. The results obtained were as follow : 1. The protein from the soiled cotton fabric was removed effectively by adding protease. The removal of protein was increased in proportion to increasing of the enzyme concentration up to a certain point, but it began to decrease above the point. The removal effect was high in the order of casein>human epidermal stratum corneum>hemoglobin. Especially the protein was more effectively removed in ADS solution(pH 9.5) containing enzyme. 2. When protease was used with ADS. the removal of protein was efficiently showed in relatively short time(5~15min.) compared to using ADS only. It is due to the properties of this enzyme that reacts with very short time. 3. Even at low temperature the removal efficiency of enzyme was relatively higher compared with the activity of enzyme. The removal of protein soil was increased up to a maximum near $50^{\circ}C$, and then decreased. 4. The removal of protein by protease was improved with the increase of alkalinity in the pH range from 9.5 to 11.0 but it began to decrease above pH 11.0. 5. According to the increase of mechanical agitation, the removal effect was increased. But the removal efficiency of protease was more effective compared with the agitation in detergency. 6. According to the SDS-PAGE separation and micrograph it was confirmed that the human epidermal corneum was effectively hydrolysed by the enzyme added. So the fragments of protein were removed more efficiently by means of the interfacial reaction of AOS.

  • PDF

Influence of Spices on Histological Characteristic of Beef (향신료(香辛料)의 처리(處理)가 우육(牛肉)의 조직학적(組織學的) 특성(特性)에 미치는 영향(影響))

  • Chung, Byung-Sun;Lee, Yong-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.3
    • /
    • pp.11-20
    • /
    • 1987
  • The study was carried out to observe some fundamental effect of spices on tenderization of beef, particularly round muscle part. The study has been investigated analytically in terms of histological and sensory test to compare the tenderizing effect of the spices with respective effect of commercial meat tenderizer and mechanical tenderizer on beef. The results of formal titration assay using casein as a substrate were that garlic, radish and ginger were stronger in protein hydrolysis than the other spices. Beef with spice treatment produced partial degradation of muscle fiber and connective tissue. Connective tissues and muscle fiber were generally degraded conspicuously by the treatment of commercial meat tenderizer. A general disruption and severing of muscle fibers and severing of connective tissue were seen in the area of blade penetration. The results of sensory test on the texture were that F-value of 11.27 is significant at the 1% of the sample. Beef treated with spices was significantly tenderer than beef without treatment at 5% level.

  • PDF

Functional Properties of Sodium Caseinate Hydrolysates with Angiotensin-I-Converting Enzyme (ACE) Inhibitory Activity: A Review (Angiotensin-I Converting Enzyme(ACE) 저해효과를 갖는 Sodium Caseinate 가수분해물의 기능적 특성에 관한 연구: 총설)

  • Lee, Keon-Bong;Baick, Seung-Chun;Chon, Jung-Whan;Kim, Hyun-Sook;Song, Kwang-Young;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.7-16
    • /
    • 2014
  • Angiotensin-I-converting enzyme (ACE) inhibitory peptides have functional and potential properties of casein hydrolysates that are used in the development of food ingredients and anti-hypertensive hydrolysates derived from sodium caseinate enzymatic hydrolysates. Sodium caseinate could be treated by various kinds of commercial proteases, and then could be treated with the enzyme combination. Ultrafiltration treatment can be used to generate hydrolysates that can be used to determine ACE inhibitory activity. In general, hydrolysate quality can be evaluated by changes in hydrolysis characteristics, ACE inhibitory activity, as well as functional properties such as solubility, foam capacity, cytotoxicity, free radical-scavenging effects, and sensory evaluation. In this review, we present an overview of the ACE inhibitory peptides obtained by performing enzymatic hydrolysis on various sources to identify food ingredients and functional foods that reduce hypertension.

  • PDF

Purification and Characterization of Extracellular Temperature-Stable Serine Protease from Aeromonas hydrophila

  • Cho, Soo-Jin;Park, Jong-Ho;Park, Seong-Joo;Lim, Jong-Soon;Kim, Eung-Ho;Cho, Yeon-Jae;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.207-211
    • /
    • 2003
  • Extracellular protease, from Aeromonas hydrophila Ni 39, was purified 16.7-fold to electrophoretic homogeneity with an overall yield of 19.9%, through a purification procedure of acetone precipitation, and Q Sepharose and Sephacryl S-200 chromatographies. The isoelectric point of the enzyme was 6.0 and the molecular mass, as determined by Sephacryl S-200 HR chromatography, was found to be about 102 kDa. SDS/PAGE revealed that the enzyme consisted of two subunits, with molecular masses of 65.9 kDa. Under standard assay conditions, the apparent $K_{m}$ value of the enzyme toward casein was 0.32 mg/ml. About 90% of the proteolytic activity remained after heating at 60$^{\circ}C$ for 30 min. The highest rate of azocasein hydrolysis for the enzyme was reached at 60$^{\circ}C$, and the optimum pH of the enzyme was 9.0. The enzyme was inhibited by the serine protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), by about 87.9%, but not by E64, EDTA, pepstatin or 1,10-phenanthroline. The enzyme activity was inhibited slightly by Ca$\^$2+/, Mg$\^$2+/ and Zn/supb 2+/ ions.

Enhanced Effect of Gluten Hydorlysate on Solubility and Bioavailability of Calcium in Rats (글루템 가수분해물에 의한 칼슘의 가용화 및 체내이용성 증진 효과)

  • 이연숙
    • Journal of Nutrition and Health
    • /
    • v.30 no.1
    • /
    • pp.40-47
    • /
    • 1997
  • Dietary peptides have recently received attention regarding their beneficial effects on nutrient metabolism since the caseinphosphoptides obtained from casein hydrolysate are generally believed to enhance the intestinal absorption of Ca. The two experiments were conducted to investigate the effects of various hydrolyzed fractions of gluten on Ca bioavailability. The gluten hydrolysate of dietary components was produced by enzymatic hydrolysis of gluten whereas gluten hydrolysate supernationt and its precipiate resulted from centrifugation. In experiment I, the rats were for 4 weeks fed the 4 kinds of diets containing same amount of nitrogen and calories and diffeing only in the forms of nitrogen sources. The diets were gluten (G), gluten hydrolysat(GH), gluten hydrolysate supernatant(GHS) and gluten hydrolysate precipitatie(GHP). Determination was made for the body weight gain, serum Ca concentration, Ca solubility in small intestinal contents, bone weight, length and stength, bone ash and Ca content, and Ca balance, respectively. No significant difference was noticed as regards growth, serum Ca, and bone dimension and Ca content among rat groups. More significant increase was observed with regard to Ca absorption and intestinal solubility in the rats receiving the GH or GHS diet which containe crude gluten peptides, than in those subjected to G or GHP diet. In experiment II, in vitro determination for Ca solubility was made to ascertain the mechanism responsible for the effects of gluten peptides on Ca absorption. The 10mM Ca in potassium phosphate buffer solution(pH 7.0) incubated for 3 hours at 37$^{\circ}C$ by the GHS fraction, was observed to be capable of increasing the Ca solubility at 5-25mg/ml concentration of gluten peptides. These observations suggest that the gluten peptides from gluten hydrolysate may enhance the Ca absorption efficiency by increasing the solubility of Ca in small intestine.

  • PDF

Characteristics of Aminopeptidase Retentate Fraction from the Common Squid Todarodes pacificus Hepatopancreas Obtained by Ultrafiltration, and Its Lowering the Bitterness (살 오징어(Todarodes pacificus) 간췌장 유래 한외여과 Aminopeptidase Retentate Fraction의 특성과 쓴맛 개선효과)

  • Kim, Jin-Soo;Lee, Jung Suck;Yoon, In Seong;Kang, Sang In;Park, Sun Young;Jeong, U-Cheol;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.1
    • /
    • pp.112-122
    • /
    • 2020
  • This study investigated some enzymatic properties and bitterness improvement of an aminopeptidase retentate fraction (ARF) from common squid Todarodes pacificus hepatopancreas extract (HPE), obtained by ultrafiltration with a 10 kDa molecular weight cut off membrane. Endoprotease and aminopeptidase (AP) activity, and the purity of the ARF (>10 kDa) increased by 6.69-18.11 U/mg and 1.5-2.6 fold, respectively, compared to HPE (2.63-9.37 U/mg). The AP activity toward LeuPNA was stable at 20-55℃ and pH 5-9, but decreased slightly with increasing concentration of NaCl in the reaction mixture. The ARF was the most active MetPNA and preferentially hydrolyzed Glu, Leu and AlaPNA. The bitterness tryptic casein hydrolysates (BTCHs) were treated with ARF, and the bitterness of ARF-BTCHs significantly decreased with increasing amounts of released amino acids Ala, Val, Met, Ile and Leu, which show strong correlations with bitterness. Therefore, the ARF of T. pacificus HPE obtained by ultrafiltration may have a considerable potential for application in protein hydrolysis and appears to be ideally suited to the purpose of lowing bitterness in protein hydrolysates.