• Title/Summary/Keyword: Case-Based Reasoning Method

Search Result 146, Processing Time 0.021 seconds

Development of Case-adaptation Algorithm using Genetic Algorithm and Artificial Neural Networks

  • Han, Sang-Min;Yang, Young-Soon
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • In this research, hybrid method with case-based reasoning and rule-based reasoning is applied. Using case-based reasoning, design experts'experience and know-how are effectively represented in order to obtain a proper configuration of midship section in the initial ship design stage. Since there is not sufficient domain knowledge available to us, traditional case-adaptation algorithms cannot be applied to our problem, i.e., creating the configuration of midship section. Thus, new case-adaptation algorithms not requiring any domain knowledge are developed antral applied to our problem. Using the knowledge representation of DnV rules, rule-based reasoning can perform deductive inference in order to obtain the scantling of midship section efficiently. The results from the case-based reasoning and the rule-based reasoning are examined by comparing the results with various conventional methods. And the reasonability of our results is verified by comparing the results wish actual values from parent ship.

  • PDF

Improving Real-Time Efficiency of Case Retrieving Process for Case-Based Reasoning

  • Park, Yoon-Joo
    • Asia pacific journal of information systems
    • /
    • v.25 no.4
    • /
    • pp.626-641
    • /
    • 2015
  • Conventional case-based reasoning (CBR) does not perform efficiently for high-volume datasets because of case retrieval time. To overcome this problem, previous research suggested clustering a case base into several small groups and retrieving neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performance than the conventional CBR. This paper proposes a new case-based reasoning method called the clustering-merging CBR (CM-CBR). The CM-CBR method dynamically indexes a search pool to retrieve neighbors considering the distance between a target case and the centroid of a corresponding cluster. This method is applied to three real-life medical datasets. Results show that the proposed CM-CBR method produces similar or better predictive performance than the conventional CBR and clustering-CBR methods in numerous cases with significantly less computational cost.

RBFN기법을 활용한 적응적 사례기반 설계

  • Jeong, Sa-Beom;Im, Tae-Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.237-240
    • /
    • 2005
  • This paper describer a design expert system which determines the design values of shadow mask using Case-Based Reasoning. In Case-Based Reasoning, it is important to both retrieve similar cases and adapt the cases to meet the design specifications exactly. Especially, the difficulty in automating the adaptation process will prevent the designers from using the design expert systems efficiently and easily. This paper explains knowledge-based design support systems for shadow mask through neural network-based case adaptation. Specifically, we developed 1) representing design knowledge and 2) adaptive case-based reasoning method using RBFN (Radial Basis Function Network).

  • PDF

A Case-Based Reasoning Method Improving Real-Time Computational Performances: Application to Diagnose for Heart Disease (대용량 데이터를 위한 사례기반 추론기법의 실시간 처리속도 개선방안에 대한 연구: 심장병 예측을 중심으로)

  • Park, Yoon-Joo
    • Information Systems Review
    • /
    • v.16 no.1
    • /
    • pp.37-50
    • /
    • 2014
  • Conventional case-based reasoning (CBR) does not perform efficiently for high volume dataset because of case-retrieval time. In order to overcome this problem, some previous researches suggest clustering a case-base into several small groups, and retrieve neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performances than the conventional CBR. This paper suggests a new hybrid case-based reasoning method which dynamically composing a searching pool for each target case. This method is applied to diagnose for the heart disease dataset. The results show that the suggested hybrid method produces statistically the same level of predictive performances with using significantly less computational cost than the CBR method and also outperforms the basic clustering-CBR (C-CBR) method.

Utilizing Case-based Reasoning for Consumer Choice Prediction based on the Similarity of Compared Alternative Sets

  • SEO, Sang Yun;KIM, Sang Duck;JO, Seong Chan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.2
    • /
    • pp.221-228
    • /
    • 2020
  • This study suggests an alternative to the conventional collaborative filtering method for predicting consumer choice, using case-based reasoning. The algorithm of case-based reasoning determines the similarity between the alternative sets that each subject chooses. Case-based reasoning uses the inverse of the normalized Euclidian distance as a similarity measurement. This normalized distance is calculated by the ratio of difference between each attribute level relative to the maximum range between the lowest and highest level. The alternative case-based reasoning based on similarity predicts a target subject's choice by applying the utility values of the subjects most similar to the target subject to calculate the utility of the profiles that the target subject chooses. This approach assumes that subjects who deliberate in a similar alternative set may have similar preferences for each attribute level in decision making. The result shows the similarity between comparable alternatives the consumers consider buying is a significant factor to predict the consumer choice. Also the interaction effect has a positive influence on the predictive accuracy. This implies the consumers who looked into the same alternatives can probably pick up the same product at the end. The suggested alternative requires fewer predictors than conjoint analysis for predicting customer choices.

Case-Based Reasoning Using Self-Organization Map (자기조직화지도를 이용한 사례기반추론)

  • Kim, Yong-Su;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.382.1-382
    • /
    • 2002
  • This paper presents a new approach integrated Case-Based Reasoning with Self- Organization Map(SOM) in diagnosis systems. The causes of faults are obtained by case-base trained from SOM. When the vibration problem of rotating machinery occurs, this provides an exact diagnosis method that shows the fault cause of vibration problem. In order to verify the performance of algorithm, we applied it to diagnose the fault cause of the electric motor.

  • PDF

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF

A METHOD OF REVISING RETRIEVED SIMILAR CASES IN GA-CBR COST MODELS

  • Sooyoung Kim;Hyun-Soo Lee;Moonseo Park;Sae-Hyun Ji;Joseph Ahn
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.182-186
    • /
    • 2011
  • Early cost estimates are important to decision-making for a construction project. Moreover, the possibility of reducing the project cost is getting less as the project is progressed. Case-based reasoning (CBR), which can be viewed as an effective method for early cost estimating, is widely utilized recently. Early cost estimates using CBR have advantages over the traditional ones as they produce reasonable outputs and self-studying is possible by simply adding new cases. Case-based reasoning is composed of a cycle of retrieve, reuse, revise, and retain process. However, in the majority of research cases, they are focused on how to retrieve the similar cases, instead of revising the cases which is expected to increase accuracy results of cost estimation. This research suggests a method of revising retrieved similar cases in a GA-CBR cost model which is widely studied and utilized for early cost estimating recently. To validate the proposed method, case study is conducted based on Korean public apartment projects.

  • PDF

Development a Spatial Analysis System using the Case-based Reasoning Approach (사례기반 추론방법을 적용한 공간분석 시스템)

  • 오규식;최준영
    • Spatial Information Research
    • /
    • v.9 no.2
    • /
    • pp.171-184
    • /
    • 2001
  • The nature of ill-defined planning problems makes expert systems difficult to acquire and represent knowledge for decision making in urban planning processes. In order to resolve these problems, a case-based reasoning method was applied to develop a spatial analysis system for urban planning. A case study was conducted in a residential land use planning process. The result of the study revealed the effectiveness of reasoning by the spatial analysis system and the possibility of its future application. More accumulation of information on other successful cases should be sought to yield better results

  • PDF

A Study on the Case-Based Reasoning Setup Planning: Focused on the Similarity Index (CBR을 이용한 Setup Planning에서의 Similarity Index 결정에 관한 연구)

  • Han, Man-Chul;Park, Sun-Joo;Ha, Sung-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.119-126
    • /
    • 2006
  • This paper addresses the methodology development far the automated machining setup planning system using case-based reasoning(CBR). The case-based reasoning is used to develop a setup planning system. which consists of part input and representation module, case retrieval module, and case adaptation module. We present new approaches in the part input and representation module and the case retrieval module focusing on the similarity index determination. An illustrative example is included to demonstrate the proposed method.