This paper is to evaluate the application potentials of data mining in the areas of Supply Chain Management (SCM) and to suggest the architectures of Decision Support Systems (DSS) that support data mining activities. We first briefly introduce data mining and review the recent literatures on SCM and then evaluate data mining applications to SCM in three aspects: marketing, operations management and information systems. By analyzing the cases about pricing models in distribution channels, demand forecasting and quality control, it is shown that artificial intelligence techniques such as artificial neural networks, case-based reasoning and expert systems, combined with traditional analysis models, effectively mine the useful knowledge from the large volume of SCM data. Agent-based information system is addressed as an important architecture that enables the pursuit of global optimization of SCM through communication and information sharing among supply chain constituents without loss of their characteristics and independence. We expect that the suggested architectures of intelligent DSS provide the basis in developing information systems for SCM to improve the quality of organizational decisions.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.05a
/
pp.303-306
/
2000
본 논문에서는 선박에서 화재탐지를 위해서 규칙 기반 추론과 사례 기반 추론을 통합하는 방법에 대해서 논의하였다. 규칙은 어떤 영역에서 광범위한 경향을 표현하는데 적합하며 사례는 규칙에서 예외적인 상황을 다루는데 적합하다는 점에서 규칙과 사례는 상호 보완적이라 할 수 있다. 즉 어떤 행동이 충분히 반복되면 자연스럽게 규칙이 되며, 잘 확립된 규칙이 있다면 사례를 먼저 추론할 필요가 없다. 그러나 규칙이 실패하게 되면 실패를 만회하기 위해서 사례를 생성하는 것이 하나의 대안이 될 수 있다. 본 논문에서는 일반적인 화재탐지 지식은 규칙으로 표현하고, 예외적인 화재탐지 지식은 사례로 표현함으로써 규칙과 사례가 서로 보완적인 역할을 할 수 있는 통합 방법을 제안하였다. 또한 기존의 규칙 기반 FFES(Fire Fighting Expert System)와 사례기반 추론에 의해 확장된 C-FFES(Combined-Fire Fighting Expert System)를 비교를 통해, 제안한 접근 방법이 화재 탐지율을 향상시킴을 보였다.
Journal of Korean Institute of Industrial Engineers
/
v.26
no.4
/
pp.306-314
/
2000
In this paper we present a new approach to estimate link travel speed based on the hybrid neuro-fuzzy network. It combines the fuzzy ART algorithm for structure learning and the backpropagation algorithm for parameter adaptation. At first, the fuzzy ART algorithm partitions the input/output space using the training data set in order to construct initial neuro-fuzzy inference network. After the initial network topology is completed, a backpropagation learning scheme is applied to optimize parameters of fuzzy membership functions. An initial neuro-fuzzy network can be applicable to any other link where the probe car data are available. This can be realized by the network adaptation and add/modify module. In the network adaptation module, a CBR(Case-Based Reasoning) approach is used. Various experiments show that proposed methodology has better performance for estimating link travel speed comparing to the existing method.
International conference on construction engineering and project management
/
2007.03a
/
pp.239-248
/
2007
In the highly competitive construction industry, a slight inaccuracy of estimation can easily cause the loss of a project. Erroneous experience-based cost estimates or allocations of on-site supervisory manpower often offset the profit gained from the project and may jeopardize the management processes. To counter these types of problems, we develop a model using mathematical analysis and case-based reasoning to automate the allocation of on-site supervisory manpower and estimate construction site costs. The method is founded upon laborious data collection processes and analysis by matching statistical assumptions, and is applicable to construction projects. In the modeling the costs and allocation of on-site supervisory manpower are quantified for both owners and contractors before initiating or bidding on the projects. The findings confirm that the degree of variation of the model predictions has an accuracy rate at 88.47%. Single-site construction projects can be accurately predicted and the assignment of supervisory manpower feasibly automated.
International conference on construction engineering and project management
/
2005.10a
/
pp.830-835
/
2005
4D models help construction planners to develop and evaluate construction plans. However, current analyses using 4D models are mainly visual and limit the quantitative comparison of construction alternatives. This paper explores the usefulness of extracting quantitative information from 4D models to support time-space analyses. We use two 4D models of an industry test case to illustrate how to analyze 4D content quantitatively (i.e., work space areas and distances between concurrent activities). This paper shows how these two types of 4D content can be extracted from 4D models to support 4D-based-analysis and novel presentation of construction planning information. We suggest further research to formalize the content of 4D models to enable comparative quantitative analyses of construction planning alternatives. Formalized 4D content will enable the development of reasoning mechanisms that automate 4D-model-based analyses and provide the information content for informative presentations of construction planning information.
This study developed a prediction model using machine learning technology and predicted the success of health consulting by using life log data generated through u-Health service. The model index of the Random Forest model was the highest using. As a result of analyzing the Random Forest model, blood pressure was the most influential factor in the success or failure of metabolic syndrome in the subjects of u-Health service, followed by triglycerides, body weight, blood sugar, high cholesterol, and medication appear. muscular, basal metabolic rate and high-density lipoprotein cholesterol were increased; waist circumference, Blood sugar and triglyceride were decreased. Further, biometrics and health behavior improved. After nine months of u-health services, the number of subjects with four or more factors for metabolic syndrome decreased by 28.6%; 3.7% of regular drinkers stopped drinking; 23.2% of subjects who rarely exercised began to exercise twice a week or more; and 20.0% of smokers stopped smoking. If the predictive model developed in this study is linked with CBR, it can be used as case study data of CBR with high probability of success in the prediction model to improve the compliance of the subject and to improve the qualitative effect of counseling for the improvement of the metabolic syndrome.
Journal of the Korea Society of Computer and Information
/
v.8
no.1
/
pp.20-29
/
2003
According as quantity of information is augmented rapidly in World Wide Web, users are investing more times finding correct information to on. Search function that a search agent is personalized according to user's preference degree or search objective to solve these problem should be offered. Therefore, a search agent accumulates experienced knowledge connected with user's past search in this research. When new query was given, search agent offered learning function of intelligence that decides category group through estimation method of similarity using this knowledge. So this paper showed that case based search can bring superior result in the correctness rate than other search method.
Nowadays, new product development (NPD) is one of the most crucial factors for business success. The manufacturing firms cannot afford the resources in the long development cycle and the costly redesigns. Good product planning is crucial to ensure the success of NPD, while the Quality Function deployment (QFD) is an effective tool to help the decision makers to determine appropriate product specifications in the product planning stage. Traditionally, in the QFD, the product specifications are determined by a rather subjective evaluation, which is based on the knowledge and experience of the decision makers. In this paper, the traditional QFD methodology is firstly reviewed. An improved Hybrid Quality Function Deployment (HQFD) [MSOfficel] then presented to tackle the shortcomings of traditional QFD methodologies in determining the engineering characteristics. A structured questionnaire to collect and analyze the customer requirements, a methodology to establish a QFD record base and effective case retrieval, and a model to more objectively determine the target values of engineering characteristics are also described.
International conference on construction engineering and project management
/
2015.10a
/
pp.597-598
/
2015
In order to improve the reliability of cost estimation results using CBR, there has been a continuous issue on similarity measurement to accurately compute the distance among attributes and cases to retrieve the most similar singular or plural cases. However, these existing similarity measures have limitations in taking the covariance among attributes into consideration and reflecting the effects of covariance in computation of distances among attributes. To deal with this challenging issue, this research examines the weighted Mahalanobis distance based similarity measure applied to CBR cost estimation and carries out the comparative study on the existing distance measurement methods of CBR. To validate the suggest CBR cost model, leave-one-out cross validation (LOOCV) using two different sets of simulation data are carried out. Consequently, this research is expected to provide an analysis of covariance effects in similarity measurement and a basis for further research on the fundamentals of case retrieval.
Proceedings of the Korean Society for the Gifted Conference
/
2003.05a
/
pp.137-138
/
2003
Understanding how and why people differ is a fundamental, if distant, goal of research efforts to bridge psychological and biological levels of analysis. General fluid intelligence (gF) is a major dimension of individual differences and refers to reasoning and novel problemsolving ability. A conceptual integration of evidence from cognitive (behavioral) and anatomical studies suggeststhat gF should covary with both task performance and neural activity in specific brain systems when specific cognitive demands are present, with the neural activity mediating the relation between gF and performance. Direct investigation of this possibility will be a critical step toward a mechanistic model of human intelligence. In turn, a mechanistic model might suggest ways to enhance gF through targeted behavioral or neurobiological intervent ions, We formed two different groups as subjects based on their scholarly attainments. Each group consists of 20 volunteers(aged 16-17 years, right-handed males) from the National Gifted School and a local high school respectively. To test whether individual differences in general intelligence are mediated at a neural level, we first assessed intellectual characteristics in 40 subjects using standard intelligence tests (Raven's Advanced Progressive Matrices, Wechsler Adult Intelligence Scale, Torrance Tests of Creative Thinking) administered outside of the MR scanner. We then used functional magnetic resonance imaging (fMRl) to measure task-related brain activity as participants performed three different kinds of computerized reasoning tasks that were intended to activate the relevant neural systems. To examine the difference of neural activity according to discrepancy in general intelligence, we compared the brain activity of both extreme groups (each, n=10) of the participants based on the standard intelligence test scores. In contrast to the common expectation, there was no significant difference of brain region involved in high-g tasks between both groups. Random effect analysis exhibited that lateral prefrontal, anterior cingulate and parietal cortex are associated with gF. Despite very different task contents in the three high-g-low-g contrasts, recruitment of multiple regions is markedly similar in each case, However, on the task with high 9F correlations, the Prodigy group, (intelligence rank: >99%) showed higher task-related neural activity in several brain regions. These results suggest that the relationship between gF and brain activity should be stronger under high-g conditions than low-g conditions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.