• Title/Summary/Keyword: Case Prediction

Search Result 2,145, Processing Time 0.035 seconds

A Study on the Prediction Model for Imported Vehicle Purchase Cancellation Using Machine Learning: Case of H Imported Vehicle Dealers (머신러닝을 이용한 국내 수입 자동차 구매 해약 예측 모델 연구: H 수입차 딜러사 대상으로)

  • Jung, Dong Kun;Lee, Jong Hwa;Lee, Hyun Kyu
    • The Journal of Information Systems
    • /
    • v.30 no.2
    • /
    • pp.105-126
    • /
    • 2021
  • Purpose The purpose of this study is to implement a optimal machine learning model about the cancellation prediction performance in car sales business. It is to apply the data set of accumulated contract, cancellation, and sales information in sales support system(SFA) which is commonly used for sales, customers and inventory management by imported car dealers, to several machine learning models and predict performance of cancellation. Design/methodology/approach This study extracts 29,073 contracts, cancellations, and sales data from 2015 to 2020 accumulated in the sales support system(SFA) for imported car dealers and uses the analysis program Python Jupiter notebook in order to perform data pre-processing, verification, and modeling that is applying and learning to Machine learning model after then the final result was predicted using new data. Findings This study confirmed that cancellation prediction is possible by applying car purchase contract information to machine learning models. It proved the possibility of developing and utilizing a generalized predictive model by using data of imported car sales system with machine learning technology. It can reduce and prevent the sales failure as caring the potential lost customer intensively and it lead to increase sales revenue by predicting the cancellation possibility of individual customers.

Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models (잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법)

  • Choo, Young-Suk;Shin, Seung-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.

Compensating time delay in semi-active control of a SDOF structure with MR damper using predictive control

  • Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.445-458
    • /
    • 2022
  • Some of the control systems used in engineering structures that use sensors and decision systems have some time delay reducing efficiency of the control system or even might make it unstable. In this research, in addition to considering the effect of the time delay in vibration control process, predictive control is used to compensate the time delay. A semi-active vibration control approach with the help of magneto-rheological dampers is implemented. In addition to using fuzzy inference system to determine the appropriate control voltage for MR damper, structural behavior prediction system and specifying future responses are also used such that the time delays occurring within control process are overcome. For this purpose, determination of prediction horizon is conducted for one, five, and ten steps ahead for single degree of freedom structures with periods ranging from 0.1 to 4 seconds, subjected to twenty earthquake excitations. The amount of time delay applied to the control system is 0.1 seconds. The obtained results indicate that for 0.1 second time delay, average prediction error values compared to the case without time delay is 3.47 percent. Having 0.1 second time delay in a semi-active control system reduces its efficiency by 11.46 percent; while after providing the control system with structure behavior prediction, the difference in the results for the control system without time delay is just 1.35 percent on average; indicating a 10.11 percent performance improvement for the control system.

Runoff Prediction from Machine Learning Models Coupled with Empirical Mode Decomposition: A case Study of the Grand River Basin in Canada

  • Parisouj, Peiman;Jun, Changhyun;Nezhad, Somayeh Moghimi;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.136-136
    • /
    • 2022
  • This study investigates the possibility of coupling empirical mode decomposition (EMD) for runoff prediction from machine learning (ML) models. Here, support vector regression (SVR) and convolutional neural network (CNN) were considered for ML algorithms. Precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax) and their intrinsic mode functions (IMF) values were used for input variables at a monthly scale from Jan. 1973 to Dec. 2020 in the Grand river basin, Canada. The support vector machine-recursive feature elimination (SVM-RFE) technique was applied for finding the best combination of predictors among input variables. The results show that the proposed method outperformed the individual performance of SVR and CNN during the training and testing periods in the study area. According to the correlation coefficient (R), the EMD-SVR model outperformed the EMD-CNN model in both training and testing even though the CNN indicated a better performance than the SVR before using IMF values. The EMD-SVR model showed higher improvement in R value (38.7%) than that from the EMD-CNN model (7.1%). It should be noted that the coupled models of EMD-SVR and EMD-CNN represented much higher accuracy in runoff prediction with respect to the considered evaluation indicators, including root mean square error (RMSE) and R values.

  • PDF

Analysis of Online Behavior and Prediction of Learning Performance in Blended Learning Environments

  • JO, Il-Hyun;PARK, Yeonjeong;KIM, Jeonghyun;SONG, Jongwoo
    • Educational Technology International
    • /
    • v.15 no.2
    • /
    • pp.71-88
    • /
    • 2014
  • A variety of studies to predict students' performance have been conducted since educational data such as web-log files traced from Learning Management System (LMS) are increasingly used to analyze students' learning behaviors. However, it is still challenging to predict students' learning achievement in blended learning environment where online and offline learning are combined. In higher education, diverse cases of blended learning can be formed from simple use of LMS for administrative purposes to full usages of functions in LMS for online distance learning class. As a result, a generalized model to predict students' academic success does not fulfill diverse cases of blended learning. This study compares two blended learning classes with each prediction model. The first blended class which involves online discussion-based learning revealed a linear regression model, which explained 70% of the variance in total score through six variables including total log-in time, log-in frequencies, log-in regularities, visits on boards, visits on repositories, and the number of postings. However, the second case, a lecture-based class providing regular basis online lecture notes in Moodle show weaker results from the same linear regression model mainly due to non-linearity of variables. To investigate the non-linear relations between online activities and total score, RF (Random Forest) was utilized. The results indicate that there are different set of important variables for the two distinctive types of blended learning cases. Results suggest that the prediction models and data-mining technique should be based on the considerations of diverse pedagogical characteristics of blended learning classes.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

A Modified Logistic Regression Model for Probabilistic Prediction of Debris Flow at the Granitic Rock Area and Its Application; Landslide Prediction Map of Gangreung Area (화강암질암지역 토석류 산사태 예측을 위한 로지스틱 회귀모델의 수정 및 적용 - 강릉지역을 대상으로)

  • Cho, Yong-Chan;Chae, Byung-Gon;Kim, Won-Young;Chang, Tae-Woo
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.115-128
    • /
    • 2007
  • This study proposed a modified logistic regression model for a probabilistic prediction of debris flow on natural terrain at the granitic rock area. The modified model dose not contain any categorical factors that were used in the previous model and secured higher reliability of prediction than that of the previous one. The modified model is composed of lithology, two factors of geomorphology, and three factors of soil property. Verification result shows that the prediction reliability is more than 86%. Using the modified regression model, the landslide prediction maps were established. In case of Sacheon area, the prediction map showed that the landslide occurrence was not well corresponded with the model since, even though the forest-fred area was distributed on the center of the model, no factors were considered for the landslide predictions. On the other hand, the prediction model was well corresponded with landslide occurrence at Jumunjin-Yeongok area. The prediction model developed in this study has very high availability to employ in other granitic areas.

A STUDY ON THE IMPROVEMENT OF κ-εTURBULENCE MODEL FOR PREDICTION OF THE RECIRCULATION FLOW (재순환유동 예측을 위한 κ-ε 난류모델 개선에 대한 연구)

  • Lee, Y.M.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.12-24
    • /
    • 2016
  • The standard ${\kappa}-{\varepsilon}$ and realizable ${\kappa}-{\varepsilon}$ models are adopted to improve the prediction performance on the recirculating flow. In this paper, the backward facing step flows are used to assess the prediction performance of the recirculation zone. The model constants of turbulence model are obtained by the experimental results and they have a different value according to the flow. In the case of an isotropic flow situation, decaying of turbulent kinetic energy should follow a power law behavior. In accordance with the power law, the coefficients for the dissipation rate of turbulent kinetic energy are not universal. Also, the other coefficients as well as the dissipation coefficient are not constant. As a result, a suitable coefficients can be varied according to each of the flow. The changes of flow over the backward facing step in accordance with model constants of the ${\kappa}-{\varepsilon}$ models show that the reattachment length is dependent on the growth rate(${\lambda}$) and the ${\kappa}-{\varepsilon}$ models can be improved the prediction performance by changing the model constants about the recirculating flow. In addition, it was investigated for the curvature correction effect of the ${\kappa}-{\varepsilon}$ models in the recirculating flow. Overall, the curvature corrected ${\kappa}-{\varepsilon}$ models showed an excellent prediction performance.

Prediction of Fretting Fatigue Life for Lap Joint Structures of Aircraft (항공기 겹침이음 조립구조의 프레팅 피로수명 예측)

  • Kwon, Jung-Ho;Joo, Seon-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.642-652
    • /
    • 2009
  • Most of lap jointed aircraft structures encounter the fretting damages, which provoke fretting cracks prematurely and lead to significant reduction of fatigue life. In the case of ageing aircrafts especially, this fretting fatigue problem is a fatal threat for the safety and airworthiness. Recently, as the service life extension program(SLEP) of ageing aircrafts has become a hot issue, the prediction of fretting fatigue life is also indispensable. On these backgrounds, a series of experimental tests of fretting fatigue on bolted lap joint specimens, were performed. And the fretting crack initiation and propagation life of each specimen were evaluated using existing and newly proposed prediction models with the fretting parameters obtained from the FEA results for elasto-plastic contact stress analyses. The validations of prediction models were also discussed, comparing the prediction results with experimental test ones.

A Study on the Performance Prediction of Marine System using Approximation Model (근사모델을 이용한 해양시스템 성능예측에 관한 연구)

  • Lee, Jae-chul;Shin, Sung-chul;Lee, Soon-Sub;Kang, Dong-hoon;Lee, Jong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.286-294
    • /
    • 2016
  • In the initial design stage, the geometry of systems needs to be optimized regarding its performance. However, performance analysis is very time-consuming. Therefore, optimization becomes difficult/impossible problems because we need to evaluate the system performance for alternative design cases. To overcome this problem, many researchers perform prediction of system performance using the approximation model. The response surface method (RSM) is typically used to predict the system performance in the various research fields, but it presents prediction errors for highly nonlinear systems. The major objective of this paper is to propose a proper prediction method for marine system problems. Case studies of marine systems (the substructure of a floating offshore wind turbine considering hydrodynamic performance and bulk carrier bottom stiffened panels considering structure performance) verify that the proposed method is applicable to performance prediction in marine systems.