• Title/Summary/Keyword: Cascaded inverters

Search Result 71, Processing Time 0.024 seconds

A Novel Topology Structure and Control Method of High-Voltage Converter for High-Input-Voltage Applications

  • Song, Chun-Wei;Zhao, Rong-Xiang;Zhang, Hao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • In this paper, a three-phase high-voltage converter (HVC), in which the main structure of each phase is composed of a cascaded PWM rectifier (CPR) and cascaded inverter (CI), is studied. A high-voltage grid is the input of the HVC. In order to ensure proper operation of the HVC, the control method should achieve output voltage sharing (OVS) among the rectifiers in the CPR, OVS among the inverters in the CI, and high power factor. Master-slave direct-current control (MDCC) is used to control the CPR. The ability of the control system to prevent interference is strong when using MDCC. The CI is controlled by three-loop control, which is composed of an outer common-output-voltage loop, inner current loops and voltage sharing loops. Simulation results show low total harmonic distortion (THD) in the HVC input currents and good OVS in both the CPR and CI.

A Flyback-Assisted Single-Sourced Photovoltaic Power Conditioning System Using an Asymmetric Cascaded Multilevel Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2272-2283
    • /
    • 2016
  • This paper proposes a power conditioning system (PCS) for distributed photovoltaic (PV) applications using an asymmetric cascaded multilevel inverter with a single PV source. One of the main disadvantages of the cascaded multilevel inverters in PV systems is the requirement of multiple isolated DC sources. Using multiple PV strings leads to a compromise in either the voltage balance of individual H-bridge cells or the maximum power point tracking (MPPT) operation due to localized variations in atmospheric conditions. The proposed PCS uses a single PV source with a flyback DC-DC converter to facilitate a reduction of the required DC sources and to maintain the voltage balance during MPPT operation. The flyback converter is used to provide input for low-voltage H-bridge cells which processes only 20% of the total power. This helps to minimize the losses occurring in the proposed PCS. Furthermore, transient analyses and controller design for the proposed PCS in both the stand-alone mode and the grid-connection mode are presented. The feasibility of the proposed PCS and its control scheme have been tested using a 1kW hardware prototype and the obtained results are presented.

Unification of Buck-boost and Flyback Converter for Driving Cascaded H-bridge Multilevel Inverter with Single Independent DC Voltage Source

  • Kim, Seong-Hye;Kim, Han-Tae;Park, Jin-Soo;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.190-196
    • /
    • 2013
  • It presents a unification of buck-boost and flyback converter for driving a cascaded H-bridge multilevel inverter with a single independent DC voltage source. Cascaded H-bridge multilevel inverter is useful to make many output voltage levels for sinusoidal waveform by combining two or more H-bridge modules. However, each H-bridge module needs an independent DC voltage source to generate multi levels in an output voltage. This topological characteristic brings a demerit of increasing the number of independent DC voltage sources when it needs to increase the number of output voltage levels. To solve this problem, we propose a converter combining a buck-boost converter with a flyback converter. The proposed converter provides independent DC voltage sources at back-end two H-bridge modules. After analyzing theoretical operation of the circuit topology, the validity of the proposed approach is verified by computer-aided simulations using PSIM and experiments.

A Current-Fed Parallel Resonant Push-Pull Inverter with a New Cascaded Coil Flux Control for Induction Heating Applications

  • Namadmalan, Alireza;Moghani, Javad Shokrollahi;Milimonfare, Jafar
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.632-638
    • /
    • 2011
  • This paper presents a cascaded coil flux control based on a Current Source Parallel Resonant Push-Pull Inverter (CSPRPI) for Induction Heating (IH) applications. The most important problems associated with current source parallel resonant inverters are start-up problems and the variable response of IH systems under load variations. This paper proposes a simple cascaded control method to increase an IH system's robustness to load variations. The proposed IH has been analyzed in both the steady state and the transient state. Based on this method, the resonant frequency is tracked using Phase Locked Loop (PLL) circuits using a Multiplier Phase Detector (MPD) to achieve ZVS under the transient condition. A laboratory prototype was built with an operating frequency of 57-59 kHz and a rated power of 300 W. Simulation and experimental results verify the validity of the proposed power control method and the PLL dynamics.

A Multi Carrier RPWM Technique for the Single-Phase 5-Level Cascaded Inverters (단상 5-레벨 cascade 인버터를 위한 멀티 캐리어 RPWM기법)

  • Kim J. N.;Lim Y. C.;Jung Y. G.;Kim Y. C.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.389-392
    • /
    • 2004
  • 본 연구에서는 단상 5-레벨 cascaded 인버터의 출력 전압 및 전류의 파워 스펙트럼을 광대역으로 분산시키기 위한 멀티 캐리어 RPW(Random PWM)기법을 제안하였다. 제안된 방법은 고정 주파수의 멀티 캐리어 대신에 랜덤한 주파수의 삼각파 캐리어를 사용하고 있다. PD(Phase Disposition)방식 및 H(Hybrid)방식의 멀티 캐리어 RPW을 단상 cascade H-브리지 멀티 레벨 인버터에 적용하였다. 각 방식에 따른 출력 전압과 전류 파형 및 고조파 스펙트럼을 PSIM에 의하여 확인하였으며, 제안된 방식의 타당성을 입증할 수 있었다.

  • PDF

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

Low-Cost High-Efficiency Two-Stage Cascaded Converter of Step-Down Buck and Tapped-Inductor Boost for Photovoltaic Micro-Inverters (태양광 마이크로 인버터를 위한 탭인덕터 부스트 및 강압형 컨버터 캐스케이드 타입 저가형 고효율 전력변환기)

  • Jang, Jong-Ho;Shin, Jong-Hyun;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • This paper proposes a two-stage step-down buck and a tapped-inductor boost cascaded converter for high efficiency photovoltaic micro-inverter applications. The proposed inverter is a new structure to inject a rectified sinusoidal current into a low-frequency switching inverter for single-phase grid with unity power factor. To build a rectified-waveform of the output current. the converter employs both of a high efficiency step-up and a step-down converter in cascade. In step-down mode, tapped inductor(TI) boost converter stops and the buck converter operates alone. In boost mode, the TI converter operates with the halt of buck operation. The converter provides a rectified current to low frequency inverter, then the inverter converts the current into a unity power-factor sinusoidal waveform. By applying a TI, the converter can decrease the turn-on ratios of the main switch in TI boost converter even with an extreme step-up operation. The performance validation of the proposed design is confirmed by an experimental results of a 120W hardware prototype.

Non-equal DC link Voltages in a Cascaded H-Bridge with a Selective Harmonic Mitigation-PWM Technique Based on the Fundamental Switching Frequency

  • Moeini, Amirhossein;Iman-Eini, Hossein;Najjar, Mohammad
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.106-114
    • /
    • 2017
  • In this paper, the Selective Harmonic Mitigation-PWM (SHM-PWM) method is used in single-phase and three-phase Cascaded H-Bridge (CHB) inverters in order to fulfill different power quality standards such as EN 50160, CIGRE WG 36-05, IEC 61000-3-6 and IEC 61000-2-12. Non-equal DC link voltages are used to increase the degrees of freedom for the proposed SHM-PWM technique. In addition, it will be shown that the obtained solutions become continuous and without sudden changes. As a result, the look-up tables can be significantly reduced. The proposed three-phase modulation method can mitigate up to the 50th harmonic from the output voltage, while each switch has just one switching in a fundamental period. In other words, the switching frequency of the power switches are limited to 50 Hz, which is the lowest switching frequency that can be achieved in the multilevel converters, when the optimal selective harmonic mitigation method is employed. In single-phase mode, the proposed method can successfully mitigate harmonics up to the 50th, where the switching frequency is 150 Hz. Finally, the validity of the proposed method is verified by simulations and experiments on a 9-level CHB inverter.

Development of 3300V 1MVA Multilevel Inverter using Cascaded H-Bridge Cell (3300V 1MVA H-브릿지 멀티레벨 인버터 개발)

  • Park Y.M.;Kim Y.D.;Lee H.W.;Lee S.H.;Seo K.D.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.593-597
    • /
    • 2003
  • Multilevel power conversion technology has received increasing attention recently for high power applications. The converters with the technology are suitable for high voltage and high power applications due to their ability to synthesize waveforms with better harmonic spectrum and apply for the high voltage equipment with a limited voltage rating of device. In the family of multilevel inverters, the topologies based on cascaded H-bridges are particularly attractive because of their modularity and simplicity of control. This paper presents multilevel inverter with cascaded H-bridge for large-power motor drives. The main features of this drive 1) reduce harmonic injection 2) can generate near-sinusoidal voltages, 3) have almost no common-mode voltage; 4) are low dv/dt at output voltage; 5)do not generate significant over-voltage on motor terminal; The topology of the developed product is presented and the feasibility study of the inverter on 3300v 1MVA 7-level H-bridge type was tarried out with experiments.

  • PDF

Fault Tolerant Operation of CHB Multilevel Inverters Based on the SVM Technique Using an Auxiliary Unit

  • Kumar, B. Hemanth;Lokhande, Makarand M.;Karasani, Raghavendra Reddy;Borghate, Vijay B.
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.56-69
    • /
    • 2018
  • In this paper, an improved Space Vector Modulation (SVM) based fault tolerant operation on a nine-level Cascaded H-Bridge (CHB) inverter with an additional backup circuit is proposed. Any type of fault in a power converter may result in a power interruption and productivity loss. Three different faults on H-bridge modules in all three phases based on the SVM approach are investigated with diagrams. Any fault in an inverter phase creates an unbalanced output voltage, which can lead to instability in the system. An additional auxiliary unit is connected in series to the three phase cascaded H-bridge circuit. With the help of this and the redundant switching states in SVM, the CHB inverter produces a balanced output with low harmonic distortion. This ensures high DC bus utilization under numerous fault conditions in three phases, which improves the system reliability. Simulation results are presented on three phase nine-level inverter with the automatic fault detection algorithm in the MATLAB/SIMULINK software tool, and experimental results are presented with DSP on five-level inverter to validate the practicality of the proposed SVM fault tolerance strategy on a CHB inverter with an auxiliary circuit.