• 제목/요약/키워드: Cascade impactor

검색결과 104건 처리시간 0.027초

2006~2007년 천안시 대기 에어로졸의 입경별 농도 및 이온성분 특성 (Size-segregated mass and ion concentrations of atmospheric aerosols in Cheonan City between 2006 and 2007)

  • 이형배;오세원
    • 한국산학기술학회논문지
    • /
    • 제9권5호
    • /
    • pp.1349-1353
    • /
    • 2008
  • 충청남도, 천안시 대기 에어로졸의 입경별 농도 및 이온성분 특성을 분석하고자, 2006년 3월부터 2007년 4월까지 천안시 상명대학교에서 Cascade Impactor를 장착한 High Volume Air Sampler를 이용하여 대기 시료를 채취 분석하였다. 입경별 에어로졸의 일평균농도는 TSP, PM10, PM2.5, PM1이 각각 61.7, 55.2, 43.7, $33.2{\mu}g/m^3$였으며, 직경이 $1{\sim}3{\mu}m$인 영역을 경계로 조대영역과 미세영역으로 나누어지는 전형적인 도심지 특성을 나타냈다. 이 중 미세영역입자인 PM2.5이 전체 에어로졸의 70.8%를 차지하였다. 이들 에어로졸 입자의 성분 분석 결과 양이온은 ${NH_{4}}^+$, $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$이, 음이온은 ${SO_{4}}^{2-}$, ${NO_{3}}^-$, $Cl^-$가 주요 성분이었으며, 이들 수용성 이온이 차지하는 비율은 조대입자에서 37.4%, 미세입자에서 46.2%였다.

수원지역 분진의 입경별 이온성분 분포특성에 관한 연구 (Characteristics of Ionic Components in Size-resolved Particulate Matters in Suwon Area)

  • 오미석;이태정;김동술
    • 한국대기환경학회지
    • /
    • 제25권1호
    • /
    • pp.46-56
    • /
    • 2009
  • The main purpose of this study was to investigate air quality trends of ambient aerosol with obtaining size-fractionated information. The suspended particulate matters were continuously collected on membrane filters and glass fiber filters by an 8-stage cascade impactor for 2 years (Sep. 2005 $\sim$ Sep. 2007) in Kyung Hee University-Global Campus. 8 ionic species ($Na^+$, ${NH_4}^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) were analyzed by an IC after performing proper pretreatments of each sample filter. The average concentration levels of each ion were $9.24{\mu}g/m^3$ of ${SO_4}^{2-}$, $7.35{\mu}g/m^3$ of ${NO_3}^-$, $2.81{\mu}g/m^3$ of ${NH_4}^+$, $2.11{\mu}g/m^3$ of $Ca^{2+}$, $1.65{\mu}g/m^3$ of $Cl^-$, $1.87{\mu}g/m^3$ of $Na^+$, $0.80{\mu}g/m^3$ of $Mg^{2+}$, and $0.54{\mu}g/m^3$ of $K^+$, respectively. The distribution pattern of $Na^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, and ${NO_3}^-$ was bi-modal and two peaks appeared in the range of $0.4{\sim}0.7{\mu}m$ and $3.3{\sim}4.7{\mu}m$, respectively. On the other hand, ${SO_4}^{2-}$, ${NH_4}^+$, and $K^+$ showed patterns of uni-modal distribution, mostly abounded in the fine mode group.

Seasonal Size Distribution of Atmospheric Particles in Iksan, Korea

  • Kang, Gong-Unn;Kim, Nam-Song;Rhim, Kook-Hwan
    • 한국환경보건학회지
    • /
    • 제32권6호
    • /
    • pp.543-555
    • /
    • 2006
  • During a twenty-day period in 2005, a nine-stage Andersen cascade impactor was used to determine the seasonal size distribution of atmospheric particles and its inorganic ion species sampled for 24hr in Iksan city, located southwest of the Korean peninsula. Samples were analyzed for major water-soluble ion species using Dionex-100 ion chromatograph. Average fine and coarse mass concentrations of atmospheric particles were, respectively, 31.4 and $82.6{\mu}g\;m^{-3}$ in spring and 35.8 and $73.4{\mu}g\;m^{-3}$ in fall-winter during the sampling period of 2005, while measurements of 69.8 and 9.9 were obtained in the sampling period of summer, The size distribution of particulate mass concentration during the non-Asian dust period was generally bimodal, whereas the size distribution of particulate mass concentration during the Asian dust period was unimodal due to the significant increase of coarse particles, which originated from long-range transport of soil dust particles from loess regions of the Asian continent. Among ionic species, $SO{_4}^{2-},\;NH{_4}^+,\;K^+$ were mainly distributed in fine particles due to their characteristics of emission sources and gas-to-particle conversion, while $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ were dominantly in coarse particles. However, $NO_3{^-}\;and\;Cl^-$ were distributed in both coarse particles and fine particles. Although $SO{_4}^{2-}$ was mainly distributed in fine particles, the size distributions of $SO{_4}^{2-}$ in coarse mode were significantly increased during the Asian dust events compared to those during the non-Asian dust period. $Ca^{2+}$ showed the most abundant species in the atmospheric particles during the Asian dust period. $NH{_4}^+$ was found to mainly exist as $(NH_4)_2SO_4$ in fine particles.

Source Identification and Quantification of Coarse and Fine Particles by TTFA and PMF

  • Hwang, In-Jo;Bong, Choon-Keun;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E4호
    • /
    • pp.203-213
    • /
    • 2002
  • Receptor modeling is one of statistical methods to achieve reasonable air pollution strategies. In order to maintain and manage ambient air quality, it is necessary to identify sources and to apportion its sources for ambient particulate matters. The main purpose of the study was to survey seasonal trends of inorganic elements in the coarse and fine particles. Second, this study has attempted emission sources qualitatively by a receptor method, the PMF mo-del. After that. both PMF (positive matrix factorization) model and TTFA (target transformation factor analysis) model were applied to compare and to estimate mass contribution of coarse and fine particle sources at the receptor. A total of 138 sets of samples was collected from 1989 to 1996 by a low volume cascade impactor with 9 size fraction stages at Kyung Hee University in Korea. Sixteen chemical species (Si, Ca, Fe, K, Pb, Na, Zn, Mg, Ba, Ni, V, Mn, Cr, Br, Cu. Co) were characterized by XRF. The study result showed that the weighted arithmetic mean of coarse and fine particles were 51.3 and 54.4 $\mu\textrm{g}$/㎥, respectively. Contribution of both particle fractions were esti-mated using TTFA and PMF models. The number of estimated sources was seven according to TTFA model and 8 according to PMF model. Comparison of TTFA and PMF revealed that both methodologies exhibited similar trends in their contribution pattern. However, large differences between contributions were observed in some sour-ces. The results of this study may help to suggest control strategies in local countries where known source profiles do not exist.

나무 종류에 따른 공기중 분진 농도와 입경 분포에 관한 연구 (Air concentration and particle size distribution of wood dust during wood-working processes)

  • 김승기;노재훈;김치년
    • 한국산업보건학회지
    • /
    • 제9권2호
    • /
    • pp.145-157
    • /
    • 1999
  • Wood dust is created when machines are used to cut or shape wood materials. Industries of high risk of wood dust exposure are sawmills, dimension mills, furniture industries, and carpenters, etc. Health effects associated with wood dust exposure includes dermatitis, allergic respiratory effects and cancer. Health effects of wood dus t are mainly depend on the concentration, dust size and exposure time. This study were carried out to evaluate the concentration and particle size distribution of wood dust during working processes. The subjects of this study were 53 workers exposed to wood dust in 7 furniture factories and 5 musical instruments, and 5 sawmill factories. The average total wood dust concentrations measured by personal cascade impactor were $1.82{\pm}2.31mg/m^3$ in primary manufacture, $3.59{\pm}1.72mg/m^3$ in s econdary manufacture, $5.09{\pm}1.46mg/m^3$ in sanding operation. Mass median diameters of hardwoods dust were $3.36{\mu}m$ in primary manufacture, $4.25{\mu}m$ in secondary manufacture, $4.21{\mu}m$ in sanding operation. softwoods dust were $3.39{\mu}m$ in primary manufacture, $4.34{\mu}m$ in secondary manufacture. Particle size distributions showed a nearly the same pattern in each working processes. The sample concentration of all hardwood dust exceeded the Threshold Limit Value(TLV) and 20.8% of the softwood dust exceeded the Threshold Limit Value. The range of size distribution were $0.5-10{\mu}m$ in the soft and hardwood dust. The respirable dust of soft and hardwood took up 59% and above. Therefore new threshold limit value for wood dust should be needed in Korea. Also, it should be done for various studies on health effects related to occupational exposure of wood dust.

  • PDF

주물사업장의 입자상물질 입경분포 및 비산배출 특성 (Characteristics of Size Distribution and Fugitive Emissions of Particulate Matter in Foundries)

  • 박정호;장민재;김형갑
    • 한국산업보건학회지
    • /
    • 제26권1호
    • /
    • pp.30-37
    • /
    • 2016
  • Objectives: This study was performed to measure and evaluate the concentration, size distribution and fugitive emission of particulate matter from process operations at foundries. Methods: Particle matter was collected from three foundries, and samples were also collected from a background site for calculating the fugitive emission concentration of the foundries. For the collection of the samples, a Nanosampler cascade impactor was used. Results: The concentration of TSP in the samples collected from the three foundries was $0.675{\sim}1.222mg/m^3$, $PM_{10}$ was $0.525{\sim}1.018mg/m^3$ and $PM_{2.5}$ was $0.192{\sim}0.615mg/m^3$. The mass size distribution was bimodal or monomodal with maximum peak at two stage(size $2.5{\sim}10{\mu}m$). The mass median aerodynamic diameter(MMAD) was $1.80{\sim}3.98{\mu}m$. The fugitive emission concentration of TSP varies in the range of 0.65 to $1.21mg/m^3$, which exceeds the emission standard of fugitive dust($0.5mg/m^3$). Conclusions: Particle concentration and size is an important industrial hygiene factor to protect foundry workers. Furthermore, the presence of high emission of particulate pollutants has a significant negative impact on the ambient air of the study area. Therefore, it is important to improve both the process and prevention facility in oder to reduce particulate pollutants in foundries.

2006년 천안시 대기 입자의 원소 성분 특성 (Elemental concentrations of atmospheric particles in Cheonan during 2006)

  • 오세원
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1782-1786
    • /
    • 2008
  • 천안시 대기 입자 중 원소 성분의 분포 특성을 파악하기 위해, Cascade Impactor를 장착한 High Volume Air Sampler를 이용하여 대기 입자를 미세입자와 조대입자로 나누어 채취한 후, ICP를 이용하여 16개 원소의 농도를 측정하였다. 측정된 미세입자와 조대입자의 총 질량농도는 각각 평균 33.23, $20.66{\mu}g/m3$ 이었으며, 이 중 총 원소농도는 각각 1.27, $1.71{\mu}g/m3$으로, 전체 질량의 3.8%와 8.3%를 차지하여 조대입자에 원소성분이 상대적으로 많이 분포함을 나타냈다. 미세입자와 조대입자 모두 Fe, Al, Ti이 가장 높은 농도를 나나내는 원소였으며 Pb는 총 농도가 84.55ng/m3으로 국내 기준치를 만족하였다. Al을 기준원소로 분석한 Sc, Cr, Cu, Zn, As, Se, Sn, Pb의 농축계수가 미세입자에서 1,000이상을 나타냈는데, 이는 천안시 미세입자에 포함된 원소 성분의 주요 배출원이 인위적 배출원임을 시사한다.

2003년 태안지역에서 황사 부유분진의 미생물학적 동정과 금속 성분 및 농도 (Microbiological Identification and Distribution of Metal Components in Suspended Particulate Matter during Yellow Sand Phenomena at TaeAn Region in 2003)

  • 배강우;김윤섭;김종호;박재석;지영구;이계영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제58권2호
    • /
    • pp.167-173
    • /
    • 2005
  • 연구배경 : 황사는 우리나라에서 주로 3월에서 5월까지 봄에 집중적으로 발생하는 대기오염의 주된 원인으로 사람에게 만성 기관지염을 악화시키고 호흡기 질환을 유발하는 것으로 알려져 있다. 황사기간 중 부유분진 중의 무기이온 성분과 금속성분의 분석에 대한 연구와 천식 등 호흡기 질환과의 연관성에 대한 연구는 많으나, 아직까지 황사의 부유분진중의 미생물에 대한 연구는 부족하다. 이 연구에서는 황사 현상시 부유분진 중에 박테리아, 진균 그리고 바이러스 등의 미생물의 검출유무와 종류를 알아보고 금속 성분 및 농도에 대해 알아보고자 본 연구를 시행하였다. 방 법 : 시료의 채취는 충남 태안군 파도리에서 cascade impactor(AN-200, USA)를 설치하여 1시간 동안 얻었으며 채취는 황사현상 기간과 비황사기간중 각각 한번씩 시행하였다. Cascade impactor에 의해 채취된 부유분진중의 미생물 검사는 cascade impactor내에 있는 여과지를 그람 양성균, 그람 음성균, 진균, 그리고 바이러스의 배지(4종, influenza, parainfluenza, adenovirus, RSV)에 옮긴 후에 배양하여 분석하였다. 금속 성분의 분석은 XRF를 이용하여 분석하였다. 결 과 : 조사 대상 지역의 황사기간과 비황사 기간 중 부유분진의 농도는 각각 80.2, $40.3g/m^3$ 이었다. 부유분진 중 XRF로 분석한 금속성분은 알루미늄과 규소, 황, 칼륨과 칼슘, 철 등 대부분의 금속이 비 황사 기간에 비해 황사 기간에서 농도가 높았다. 미생물 검사 결과상 그람 양성균은 Bacillus species, Coagulase negative staphylococcus가 자랐으며 황사기간보다 비 황사 기간동안 채취한 시료에서 오히려 더 많은 단계의 여과지에서 균이 동정되었으나 두 기 간에서 자라는 균주의 종류에는 차이가 없었다. 진균 배양은 비 황사 기간동안 Mucor species, Cladosporum, Alternaria, Aspergillus, Penicillium, Alternaria등의 진균들이 자랐으며, 황사 기간동안은 Penicillium과 Alternaria, 그리고 다른 mold form fungus들이 자랐다. 바이러스와 그람 음성균은 두 기간 다 자라는 균주는 없었다. 결 론 : 이 연구는 황사 기간동안 대기분진 중에 포함된 미생물에 대한 최초의 연구로 황사 현상시 미생물의 검출 종류는 크게 차이가 없었으나 개체수의 증가가 관찰되었으며 금속 성분의 종류는 차이가 없었으나 농도는 황사 현상시에 더 높은 수치를 보여 황사현상에 따른 호흡기 질환자의 주의와 대기오염에 대한 대책이 필요할 것으로 사료된다.

주물사업장 주공정별 발생하는 분진의 석영함유량 및 크기분포 연구 (Analysis of Quartz Content and Particle Size Distribution of Airborne Dust from Selected Foundry Operations)

  • 피영규;노영만;이광묵;김형아;김용우;원정일;김현욱
    • 한국산업보건학회지
    • /
    • 제7권2호
    • /
    • pp.196-208
    • /
    • 1997
  • This study was performed to estimate quartz contents in the both bulk and airborne dust samples and to determine particle size distribution of airborne dust from the selected foundry operations. Total dust samples were collected by a 37mm cassette and respirable by a 10 mm nylon cyclone. Particle size distributions were determined by a Marple's 8-stage cascade impactor at the melting, molding, shakeout and finishing operations. The presence of elements in the dust samples were confirmed by the scanning electron microscopy equipped with the energy dispersive x-ray spectrometry. The quartz contents were estimated using the intensity of the absorption peak of quartz at 799 cm-l by the Fourie Transformed Infrared Spectroscopy (FTIR). The results were as follows: 1. The analysis of data from cascade Impactor showed bimodal distributions of particle size at the melting, molding and shakeout operations. Mass median aerodynamic diameters for the distributions determined by histogram were $0.48-1.65{\mu}m$ for small and $13.43-19.58{\mu}m$ for large modes. In the dust samples collected at the finishing operations, however, only a large mode of $18.89{\mu}m$ was found. 2. The percentages of total to respirable dust concentration calculated from the impactor data ranged from 42 % to 66 %. The average concentrations of respirable dust by cyclone were $0.85-1.28mg/m^3$ collected from the workers, and were $0.23-0.56mg/m^3$ from the areas surveyed. Dust concentrations of personal samples were statistically significantly higher than those of area samples. The highest dust concentration was obtained from the personal samples of the finishing operation. 3. The mean percentages of silicon and oxygen estimated by SEM-EDXA in the bulk samples ranged from 35.83 % to 36.02 % and from 39.93 %-41.64 %, respectively. 4. The average quartz contents estimated by FTIR in the respirable dust from personal samples ranged from 4.32 % to 5.36 % and 4.54 % to 4.70 % in the bulk samples. No statistical difference of quartz content was found between foundry operations. In this study, quartz content was quantified by FTIR. Although no statistically significant difference in quartz content between airborne and bulk, samples and between different foundry operations was found, it is recommended that quartz content in the individual sample of respirable dust be analyzed and the results be used either to select an applicable quartz limits or to calculate the exposure limit. Further studies, however, are needed to compare the results by FTIR and XRD since it is reported that the quartz content determined by FTIR is different from that by XRD.

  • PDF

조선업 용접작업자의 공기 중 총 망간 및 입경별 망간 농도와 혈중 망간농도에 관한 연구 (A Study on the Total, Particle Size-Selective Mass Concentration of Airborne Manganese, and Blood Manganese Concentration of Welders in a Shipbuilding Yard)

  • 박종수;김판기;정지연
    • 한국산업보건학회지
    • /
    • 제25권4호
    • /
    • pp.472-481
    • /
    • 2015
  • Objectives: Welding is a major task in shipbuilding yards that generates welding fumes. A significant amount of welding in shipbuilding yards is done on steel. Inevitably, manganese is present in the base metals being joined and the filler wire being used and, consequently, in the fumes to which workers are exposed. The objective of this work was to characterize manganese exposure associated with work area, total and particle size-selective mass concentration, and compare the mass concentrations obtained using a three-piece cassette sampler, size-selective impactor sampler and blood manganese concentrations. Materials: All samples were collected from the main work areas at one shipbuilding yard. We used a three piece cassette sampler and the eight stage cascade impactor sampler for the airborne manganese mass concentration of total and all size fractions, respectively. In addition, we used the results of health examination of workers sampled for airborne manganese. Results: The oder of high concentration of airborne manganese in shipbuilding processes was as follows; block assembly, block erection, outfitting installation, steel cutting, and outfitting preparation. The percentages of samples that exceeded the OES of the ministry of employment and labor by the cassette sampling method was 12.5%, however 59.1% of sampled workers by the impactor sampling method exceeded the TLV of the ACGIH. Conclusions: Even though the manganese concentrations in blood of workers exposed to higher airborne manganese concentration were higher than among those exposed to lower concentrations, there was no difference in blood manganese concentrations among work duration. The data analyzed here by characterizing size-selective mass concentrations indicates that the inhaled manganese of welders in shipbuilding yards could be mostly manganese-containing respirable particle sizes.