• 제목/요약/키워드: Cartesian space control

검색결과 63건 처리시간 0.027초

유연한 조작기의 끝점위치 및 접촉력 제어 (End point and contact force control of a flexible manipulator)

  • 최병오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.552-558
    • /
    • 1993
  • In this paper, control of a planar two-link structurally flexible robotic manipulator executing unconstrained and constrained maneuvers is considered. The dynamic model, which is obtained by using the extended Hamilton's principle and the Galerkin criterion, includes the impact force generated during the transition from unconstrained to constrained segment of the robotic task. A method is presented to obtain the linearized equations of motion in Cartesian space for use in designing the control system. The linear quadratic Gaussian with loop transfer recovery (LQG/LTR) design methodology is exploited to design a robust feedback control system that can handle modeling errors and sensor noise, and operate on Cartesian space trajectory errors. The LQG/LTR compensator together with a feedforward loop is used to control the flexible manipulator. Simulated results are presented for a numerical example.

  • PDF

Inertia Space에서 우주 로봇의 적응제어 (Adaptive Control of Space Robot in Inertia Space)

  • 이주장
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.381-385
    • /
    • 1992
  • In this paper, dynamic modeling and adaptive control problems for a space robot system are discussed. The space robot consist of a robot manipulator mounted on a free-floating base where no attitude control is applied. Using an extended robot model, the entire space robot can be viewed as an under-actuated robot system. Based on nonlinear control theory, the extended space robot model can then be decomposed into two subsystems: one is input-output exactly linearizable, and the other is unlinearizable and represents an internal dynamics. With this decomposition, a normal form-augmentation approach and an augmented state-feedback control are proposed to facilitate the design of adaptive control for the space robot system against parameter uncertainty, unknown dynamics and unmodeled payload in space applications. We demonstrate that under certain conditions, the entire space robot can be represented as a full-actuated robot system to avoid the inclusion of internal dynamics. Based on the dynamic model, we propose an adaptive control scheme using Cartesian space representation and demonstrate its validity and design procedure by a simulation study.

  • PDF

Sequential Quadratic Programming based Global Path Re-Planner for a Mobile Manipulator

  • Lee Soo-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.318-324
    • /
    • 2006
  • The mobile manipulator is expected to work in partially defined or unstructured environments. In our global/local approach to path planning, joint trajectories are generated for a desired Cartesian space path, designed by the global path planner. For a local path planner, inverse kinematics for a redundant system is used. Joint displacement limit for the manipulator links is considered in the motion planner. In an event of failure to obtain feasible trajectories, the task cannot be accomplished. At the point of failure, a deviation in the Cartesian space path is obtained and a replanner gives a new path that would achieve the goal position. To calculate the deviation, a nonlinear optimization problem is formulated and solved by standard Sequential Quadratic Programming (SQP) method.

Robust Control for Free-Joint Manipulators

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.519-524
    • /
    • 1998
  • This paper presents a robust control scheme of free-joint manipulators to overcome actuator failures and uncertain-ties in Cartesian space where tasks are planned. The control scheme has the adaptation law for the upper bound on the norm of uncertainties through the Lyapunov function approach. To solve the dynamic singularity problem in the controller, the singular and nonsingular regions are investigated based on a computer simulation. Then a singularity-free Cartesian trajectory planning is achieved in order to guarantee the availability of the control scheme. To illustrate the validity of the proposed control scheme, simulation results for a three-link planar robot arm with a free joint are shown.

  • PDF

DSP를 이용한 원격 로봇의 제어 시스템 구현 (Implementation of a control system for a telerobot using DSP)

  • 노철래;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.844-849
    • /
    • 1991
  • A high speed control system for a telerobot using DSP is developed. The system is designed to resolve computational burden in advanced algorithms. The design is assumed to h ave no specific algorithm and robot configuration. The system is composed of a teaching box, a DSP board, a set of servo drivers and 16 bit microcomputer system. The teaching box is designed as a man-machine interface, which has two joysticks with three degrees of freedom for velocity generation in Cartesian space. The DSP board, i.e. DSP56000ADS based on a 10.25MIPS digital signal processor, DSP56001, computes the inverse Jacobian matrix which transforms Cartesian velocity into joint velocity. A resolved motion rate control algorithm for a 5 degrees of freedom manipulator was implemented. About 100 Hz sampling rate was achieved in this system.

  • PDF

새로운 6자유도 병렬 매니퓰레이터의 기구학 해석 (Kinimatic Analysis of a New Clss of 6-DOF Parallel Manipulator)

  • 변용규;조형석
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.414-430
    • /
    • 1996
  • In this paper, a new kinematic structure of a parallel manipulator with six Cartesian degrees of freedom is proposed. It consists of a platform which is connected to a fixed base by means of 3-PPSP(parameters P, S denote the prismatic, spherical joints) subchains. Each subchain has a link which is concected to a passive prismatic joint at the one end and a passive spherical joint at the other. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. The spherical joint is then attached to perpendicularly arranged prismatic actuators which are fixed at the base. This arrangement provides a basis to control all six Cartesian degrees of motion of the platform in space. Due to its efficient architecture, the colsed-form solutions of the inverse and forward kinematics can be obtained. As a consequence, this new kinematic structure can be servo controlled using simple inverse kinematics becaese forward kinematics allows for measuring the platform's position and orientation in Cartesian space. Furthermore, the proposed structure provides an effective functional workspace. Series of simulations are performed to verify the results of the kinematics analyses.

직선 궤적 계획을 위한 로보트 제어에 관한 연구 (A Study on the Robot Control for Straight Line Trajectory Planning)

  • 길진수;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.405-408
    • /
    • 1991
  • In this paper, the algorithm of Resolved Motion Rate Control(RMRC) is applied to the robot manipulator to implement a desired straight trajectory in the cartesian space, PI controller is also used to control the velocity and position which are produced by RMRC algorithm. And Bounded Deviation Method is used to determine the intermediate knot points which satisfy a given tolerence limit, between the straight line segment.

  • PDF

힘 반향 기법을 이용한 전방향 이동 로봇의 원격 제어 (Teleoperation Control of Omni-directional Mobile Robot with Force Feedback)

  • 이정형;이형직;정슬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.243-245
    • /
    • 2007
  • This paper presents the implementation of teleoperation control of an omni-direction mobile robot. The master joystick robot has two degrees of freedom to control the movement of the slave mobile robot in the Cartesian space. In addition, the whole teleoperated control system is closed by the force feedback. The operator can feel the contact force as the slave robot makes contact with the environment. Experimental results show that the teleooerated control with force feedback has been successfully implemented.

  • PDF

Fuzzy Logic Control for a Redundant Manipulator -Resolved Motion Rate Control

  • Kim, Sung-Woo;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.479-484
    • /
    • 1992
  • The resolved motion rate control (RMRC) is converting to Joint space trajectory from given Cartesian space trajectory. The RMRC requires the inverse of Jacobian matrix. Since the Jacobian matrix of the redundant robot is generally not square, the pseudo-inverse must be introduced. However the pseudo-inverse is not easy to be implemented on a digital computer in real time as well as mathematically complex. In this paper, a simple fuzzy resolved motion rate control (FRMRC) that can replace the RMRC using pseudo-inverse of Jacobian is proposed. The proposed FRMRC with appropriate fuzzy rules, membership functions and reasoning method can solve the mapping problem between the spaces without complexity. The mapped Joint space trajectory is sufficiently accurate so that it can be directly used to control redundant manipulators. Simulation results verify the efficiency of the proposed idea.

  • PDF

Prefilter 형태의 카오틱 신경망을 이용한 로봇 경로 제어 (Robot Trajectory Control using Prefilter Type Chaotic Neural Networks Compensator)

  • 강원기;최운하김상희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.263-266
    • /
    • 1998
  • This paper propose a prefilter type inverse control algorithm using chaotic neural networks. Since the chaotic neural networks show robust characteristics in approximation and adaptive learning for nonlinear dynamic system, the chaotic neural networks are suitable for controlling robotic manipulators. The structure of the proposed prefilter type controller compensate velocity of the PD controller. To estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the final result with recurrent neural network(RNN) controller.

  • PDF