• 제목/요약/키워드: Cartesian Robot

검색결과 121건 처리시간 0.021초

2축 직교좌표 로봇에서 2축 직선 운동 가이드가 로봇의 기계적 성능에 미치는 영향 (Effect of 2nd Axis Linear Motion Guide on Mechanical Performance of Robot in 2-Axis Cartesian Coordinate Robot)

  • 이종신
    • 한국기계기술학회지
    • /
    • 제13권1호
    • /
    • pp.95-103
    • /
    • 2011
  • Robots in various types carry and assemble parts through repeatedly and accurately moving to stored locations by combining linear motions. And, linear systems are used in orthogonal axes of robots and driven via ball screws, such as 2-axis cartesian coordinate robot in this paper. This paper presents the effect of the linear motion guide that is used in $2^{nd}$ axis in 2-axis cartesian coordinate robot. Some simulation results show that the linear motion guide influence greatly in robot performance such as the nominal life of linear guide. When use LM guide that have capacity near in $2^{nd}$ axis, this paper show that the nominal life on LM block of $1^{st}$ axis increases 37.4% and that the specification of $2^{nd}$ axis LM guide influences greatly the nominal life of $1^{st}$ axis LM block.

직각좌표 공간에서 로봇 매니퓰레이터의 직선 궤적계획에 관한 연구 (A Study on Straight Line Trajectoties of Robot Mainpulator in Cartesian Space)

  • 한상완;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.763-766
    • /
    • 1991
  • The moving of each axis in the robot manipulator can be represented with the motion of cartesian space. This paper shows the robot manipulator of the straight line trajectory planning algorithms in the cartesian space. The relation formulas between cartesian space and joint space are induced to accomplish a desired trajectory in the cartesian space and the velocity vector of sampling time in the cartesian space is transformed into the velocity vector of joint by the interpolation method. The error of trajectory in moving is removed by obtaining the real position for the present joint position and the desired distance is made by comparing the real position and the next position. Through the simple tests for suggested algorithms are confirmed the validity of algorithms.

  • PDF

로보트 운동에 대한 공간 좌표 제어 (Cartesian Coordinate Control of Robot Motion)

  • 노영식;우광방
    • 대한전기학회논문지
    • /
    • 제35권5호
    • /
    • pp.177-184
    • /
    • 1986
  • An effective cartesian coordinate model is presented to control a robot motion along a prescribed timebased hand trajectory in cartesian coordinates and to provide an adaptive feedback design approach utilizing self-tuning control methods without requiring a detailed mathematical description of the system dynamics. Assuming that each of the hybrid variable set of velocities and forces at the cartesian coordinate level is mutually independent, the dynamic model for the cartesian coordinate control is reduced to first-order SISO models for each degree of freedom of robot hand, including a term to represent all unmodeled effects, by which the number of parameters to be identified is minimized. The self-tuners are designde to minimize a chosen performance criterion, and the computed control forces are resolved into applied joint torques by the Jacobian matrix. The robustness of the model and controller is demonstrated by comparing with the other catesian coordinate controllers.

  • PDF

A Study on the Camera Calibration Algorithm of Robot Vision Using Cartesian Coordinates

  • Lee, Yong-Joong
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.98-104
    • /
    • 2002
  • In this study, we have developed an algorithm by attaching a camera at the end-effector of industrial six-axis robot in order to determine position and orientation of the camera system from cartesian coordinates. Cartesian coordinate as a starting point to evaluate for suggested algorithm, it was easy to confront increase of orientation vector for a linear line point that connects two points from coordinate space applied by recursive least square method which includes previous data result and new data result according to increase of image point. Therefore, when the camera attached to the end-effector has been applied to production location, with a calibration mask that has more than eight points arranged, this simulation approved that it is possible to determine position and orientation of cartesian coordinates of camera system even without a special measuring equipment.

로봇 매니퓰레이터의 직교공간 적응제어 방식 (A Cartesian Space Adaptive Control Scheme for Robot Manipulators)

  • 황석용;유준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.397-400
    • /
    • 1991
  • This paper presents a cartesian space decentralized adaptive controller design for the end effector of the robot manipulator to track the given desired trajectory in the cartesian coordinate. By the cartesian based control scheme, the task related high level motion command is directly executed without solving the complex inverse kinematic equations. The controller does not require the complex manipulator dynamic model, and hence it is computationally very efficient. Each degree of freedom of the end effector on the cartesian space is controlled by a PID feedback controller and a velocity acceleration feed forward conpensation part. Simulation results for a two-link direct drive manipulator conform that the present cartesian based decentralized scheme is feasible.

  • PDF

Cartesian 공간에서 로봇 머니퓰레이터의 퍼지제어 (Fuzzy control of a robot manipulator in Cartesian space)

  • 곽희성;강철구
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.165-173
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic maniprlators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller, This controller is applied to the tracking control of robotic manipulators in Cartesian space. Three dimensional look-up table is used to reduce the computational time in rel-time control. Simulation and experimental studies are conducted to evaluate the control performance for the two axis direct drive SCARA robot system.

  • PDF

센서리스 협동로봇의 직관적인 교시를 위한 직교공간 직접교시 (Cartesian Space Direct Teaching for Intuitive Teaching of a Sensorless Collaborative Robot)

  • 안국현;송재복
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.311-317
    • /
    • 2019
  • Direct teaching is an essential function for collaborative robots for easy use by non-experts. For most robots, direct teaching is implemented only in joint space because the realization of Cartesian space direct teaching, in which the orientation of the end-effector is fixed while teaching, requires a measurement of the end-effector force. Thus, it is limited to the robots that are equipped with an expensive force/torque sensor. This study presents a Cartesian space direct teaching method for torque-controlled collaborative robots without either a force/torque sensor or joint torque sensors. The force exerted to the end-effector is obtained from the external torque which is estimated by the disturbance observer-based approach with the friction model. The friction model and the estimated end-effector force were experimentally verified using the robot equipped with joint torque sensors in order to compare the proposed sensorless approach with the method using torque sensors.

Kinematic Calibration of a Cartesian Parallel Manipulator

  • Kim, Han-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.453-460
    • /
    • 2005
  • In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the manipulator may be suitable for applications requiring high speed and accuracy. Using a geometric method and the practical assumption that three revolute joint axes in each limb are parallel to one another, a simple forward kinematics for an actual model is derived, which is expressed in terms of a set of linear equations. Based on the error model, two calibration methods using full position and length measurements are developed. It is shown that for a full position measurement, the solution for the calibration can be obtained analytically. However, since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic calibration experiment on the prototype machine is performed by using a ball-bar. The effectiveness of the kinematic calibration method with a ball-bar is verified through the well­known circular test.

직교좌표공간과 관절공간에서의 4족 보행로봇의 두 가지 진화적 걸음새 생성기법 (Two Evolutionary Gait Generation Methods for Quadruped Robots in Cartesian Coordinates Space and Join Coordinates Space)

  • 서기성
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.389-394
    • /
    • 2014
  • Two evolutionary gait generation methods for Cartesian and Joint coordinates space are compared to develop a fast locomotion for quadruped robots. GA(Genetic Algorithm) based approaches seek to optimize a pre-selected set of parameters for the locus of paw and initial position in cartesian coordinates space. GP(Genetic Programming) based technique generate few joint trajectories using symbolic regression in joint coordinates space as a form of polynomials. Optimization for two proposed methods are executed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are analysed in terms of different coordinate spaces.

반도체 장비용 직교 로봇의 스틸 밴드 마모 문제 해결에 관한 연구 (A Study on Wear Problem of Cartesian Robot for Semiconductor Equipment)

  • 김종균;이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.152-156
    • /
    • 2021
  • Cartesian robot is used in semiconductor manufacturing. Friction between steel band and mover wears the steel band. The emission of wear particle from steel band contaminates semiconductor equipment. At the manufacturing site, the steel band is replaced periodically to minimize the generation of wear particle. But this is not a good way to minimize the generation of wear particle, because it is hard to specify the moment of replacement. We suggested the methodology to minimize the generation of wear particle using TRIZ technique. Also we made prototype robot which the solution is applied, and the performance of the solution was verified through experiments. As a result of verification, it was confirmed that the solution significantly reduced the generation of wear particle compared to the standard way.