• Title/Summary/Keyword: Carrier-envelope phase

Search Result 19, Processing Time 0.025 seconds

Direct Time-domain Phase Correction of Dual-comb Interferograms for Comb-resolved Spectroscopy

  • Lee, Joohyung
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.289-297
    • /
    • 2021
  • We describe a comb-mode resolving spectroscopic technique by direct time-domain phase correction of unstable interferograms obtained from loosely locked two femtosecond lasers. A low-cost continuous wave laser and conventional repetition rate stabilization method were exploited for locking carrier and envelope phase of interferograms, respectively. We intentionally set the servo control at low bandwidth, resulting in severe interferograms' fluctuation to demonstrate the capability of the proposed correction method. The envelope phase of each interferogram was estimated by a quadratic fit of carrier peaks to correct timing fluctuation of interferograms in the time domain. After envelope phase correction on individual interferograms, we successfully demonstrated 1 Hz linewidth of RF comb-mode over 200 GHz optical spectral-bandwidth with 10-times signal-to-noise ratio (SNR) enhancement compared to the spectrum without correction. Besides, the group delay difference between two femtosecond pulses is successfully estimated through a linear slope of phase information.

Characterization of carrier-envelope-offset frequency of a femtosecond laser stabilized by the direct CEP locking method

  • Luu, Tran Trung;Lee, Jae-Hwan;Kim, Eok-Bong;Park, Chang--Yong;Yu, Tae-Jun;Nam, Chang-Hee
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.241-242
    • /
    • 2009
  • Characterics of carrier-envelope-offset frequency ($f_{ceo}$) of a femtosecond laser stabilized by the direct locking method were investigated using two f-to-2f interferometers. The stability of $f_{ceo}$ was comaparable to that achieved with a conventional PLL method.

  • PDF

A Discrete-Amplitude Pulse Width Modulation for a High-Efficiency Linear Power Amplifier

  • Jeon, Young-Sang;Nam, Sang-Wook
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.679-688
    • /
    • 2011
  • A new discrete-amplitude pulse width modulation (DAPWM) scheme for a high-efficiency linear power amplifier is proposed. A radio frequency (RF) input signal is divided into an envelope and a phase modulated carrier. The low-frequency envelope is modulated so that it can be represented by a pulse whose area is proportional to its amplitude. The modulated pulse has at least two different pulse amplitude levels in order that the duty ratios of the pulse are kept large for small input. Then, an RF pulse train is generated by mixing the modulated envelope with the phase modulated carrier. The RF pulse train is amplified by a switching-mode power amplifier, and the original RF input signal is restored by a band pass filter. Because duty ratios of the RF pulse train are kept large in spite of a small input envelope, the DAPWM technique can reduce loss from harmonic components. Furthermore, it reduces filtering efforts required to suppress harmonic components. Simulations show that the overall efficiency of the pulsed power amplifier with DAPWM is about 60.3% for a mobile WiMax signal. This is approximately a 73% increase compared to a pulsed power amplifier with PWM.

Polar Transmitter with Differential DSM Phase and Digital PWM Envelope

  • Zhou, Bo;Liu, Shuli
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.313-321
    • /
    • 2014
  • A low-power low-cost polar transmitter for EDGE is designed in $0.18{\mu}m$ CMOS. A differential delta-sigma modulator (DSM) tunes a three-terminal voltage-controlled oscillator (VCO) to perform RF phase modulation, where the VCO tuning curve is digitally pre-compensated for high linearity and the carrier frequency is calibrated by a dual-mode low-power frequency-locked loop (FLL). A digital intermediate-frequency (IF) pulse-width5 modulator (PWM) drives a complementary power-switch followed by an LC filter to achieve envelope modulation with high efficiency. The proposed transmitter with 9mW power dissipation relaxes the time alignment between the phase and envelope modulations, and achieves an error vector magnitude (EVM) of 4% and phase noise of -123dBc/Hz at 400kHz offset frequency.

Theoretical Study of the Strong Field Emission of Electrons inside a Nanogap Due to an Enhanced Terahertz Field

  • Choi, Soo Bong;Byeon, Clare Chisu;Park, Doo Jae
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.508-513
    • /
    • 2018
  • We report the development of a theoretical model describing the strong field tunneling of electrons in an extremely small nanogap (having a width of a few nanometers) that is driven by terahertz-pulse irradiation, by modifying a conventional semiclassical model that is widely applied for near-infrared wavelengths. We demonstrate the effects of carrier-envelope phase difference and strength of the incident THz field on the tunneling current across the nanogap. Additionally, we show that the dc bias also contributes to the generation of tunneling current, but the nature of the contribution is completely different for different carrier-envelope phases.

다상포낙선검파법에 관한 연구

  • 이충웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.1
    • /
    • pp.18-26
    • /
    • 1973
  • In AM detection system, when the ratio of the frequency of the carrier to that of the modulating signal becomes less than a ratio of approximately 10:1, AM detectors become unable to detect the impressed signal in a satisfactory waveform. The failure of detecting such a super wide-band AM signal resulting from charging and discharging transient phenomena in associated diode circuit during the detecting of AM signal, has been a cause of limiting the channel capacity in AM or FM super multiplexing systems. This Paper presents the "Poly-phase Envelope Detection System" as a suitable method to solve the problem and the analyses of the system suggested. This system will make it possible to take the envelope out of the impressed AM signal to any desired degree of accuracy even when the ratio of the frequency of the carrier to that of the modulating signal approaches unity. Experiments were carried out to verify the validity of the theory of Poly-phase Envelope Detection System by adopting the frequency conversion method from among the two proposals.proposals.

  • PDF

Laboratory study on the modulation evolution of nonlinear wave trains

  • Dong, G.H.;Ma, Y.X.;Zhang, W.;Ma, X.Z.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-203
    • /
    • 2012
  • New experiments focusing on the evolution characteristics of nonlinear wave trains were conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness, perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental results show that the increasing wave steepness, increases the speed of sidebands growth. To study the frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous frequency of wave trains and the phase functions of each wave component. From the instantaneous frequency, there are local frequency downshifts, even an effective frequency downshift was not observed. The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum.

Reduction of sidelobe levels in multicarrier radar signals via the fusion of hill patterns and geometric progression

  • Raghavendra, Channapatna Gopalkrishna;Prakash, Raghu Srivatsa Marasandra;Panemangalore, Vignesh Nayak
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.650-659
    • /
    • 2021
  • Multi-carrier waveforms have several advantages over single-carrier waveforms for radar communication. Employing multi-carrier complementary phase-coded (MCPC) waveforms in radar applications has recently attracted significant attention. MCPC radar signals take advantage of orthogonal frequency division multiplexing properties, and several authors have explored the use of MCPC signals and the difficulties associated with their implementation. The sidelobe level and peak-to-mean-envelope-power ratio (PMEPR) are the key issues that must be addressed to improve the performance of radar signals. We propose a scheme that applies pattern-based scaling and geometric progression methods to enhance sidelobe and PMEPR levels in MCPC radar signals. Numerical results demonstrate the improvement of sidelobe and PMEPR levels in the proposed scheme. Additionally, autocorrelations are obtained and analyzed by applying the proposed scheme in extensive simulation experiments.