• Title/Summary/Keyword: Carrier recombination

Search Result 163, Processing Time 0.027 seconds

Three-Temperature Modeling of Carrier-Phonon Interactions in Thin GaAs Film Structures Irradiated by Picosecond Pulse Lasers

  • Lee Seong-Hyuk;Lee Jung-Hee;Kang Kwan-Gu;Lee Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1292-1301
    • /
    • 2006
  • This article investigates numerically the carrier-phonon interactions in thin gallium arsenide (GaAs) film structures irradiated by subpicosecond laser pulses to figure out the role of several recombination processes on the energy transport during laser pulses and to examine the effects of laser fluences and pulses on non-equilibrium energy transfer characteristics in thin film structures. The self-consistent hydrodynamic equations derived from the Boltzmann transport equations are established for carriers and two different types of phonons, i.e., acoustic phonons and longitudinal optical (LO) phonons. From the results, it is found that the two-peak structure of carrier temperatures depends mainly on the pulse durations, laser fluences, and nonradiative recombination processes, two different phonons are in nonequilibrium state within such lagging times, and this lagging effect can be neglected for longer pulses. Finally, at the initial stage of laser irradiation, SRH recombination rates increases sufficiently because the abrupt increase in carrier number density no longer permits Auger recombination to be activated. For thin GaAs film structures, it is thus seen that Auger recombination is negligible even at high temperature during laser irradiation.

A Simulated Study of Silicon Solar Cell Power Output as a Function of Minority-Carrier Recombination Lifetime and Substrate Thickness

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.487-491
    • /
    • 2015
  • In photovoltaic power generation where minority carrier generation via light absorption is competing against minority carrier recombination, the substrate thickness and material quality are interdependent, and appropriate combination of the two variables is important in obtaining the maximum output power generation. Medici, a two-dimensional semiconductor device simulation tool, is used to investigate the interdependency in relation to the maximum power output in front-lit Si solar cells. Qualitatively, the results indicate that a high quality substrate must be thick and that a low quality substrate must be thin in order to achieve the maximum power generation in the respective materials. The dividing point is $70{\mu}m/5{\times}10^{-6}sec$. That is, for materials with a minority carrier recombination lifetime longer than $5{\times}10^{-6}sec$, the substrate must be thicker than $70{\mu}m$, while for materials with a lifetime shorter than $5{\times}10^{-6}sec$, the substrate must be thinner than $70{\mu}m$. In substrate fabrication, the thinner the wafer, the lower the cost of material, but the higher the cost of wafer fabrication. Thus, the optimum thickness/lifetime combinations are defined in this study along with the substrate cost considerations as part of the factors to be considered in material selection.

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.

Evaluation of Mechanical Backside Damage of Silicon Wafer by Minority Carrier Recombination Lifetime and Photo-Acoustic Displacement Method

  • Park, Chi-Young;Cho, Sang-Hee
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.155-159
    • /
    • 1997
  • We investigated the effect of mechanical backside damage in Czochralski silicon wafer. The intensity of mechanical damage were evaluated by minority carrier recombination lifetime by a laser excitation/microwave reflection photoconductance decay method, photo-acoustic displacement method, X-ray section topography, and wet oxidation/preferential etch methods. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and the photoacoustic displacement values are also increased proportionally.

  • PDF

Transport phenomena of a-Se:As thin film for digital X-ray Conversion Material (디지털 X-선 변환물질을 위한 비소(As) 첨가 비정질 셀레늄(a-Se) 박막의 수송현상)

  • Park, Chang-Hee;Kim, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.282-283
    • /
    • 2006
  • The transport phenomena of arsenic (As) doped amorphous selenium(a-Se:As) thin film for digital X-ray conversion material has been reported. The effect of As addition on the carrier mobility and recombination lifetime in a-Se:As sample has been measured using the moving photo-carrier grating (MPG) technique. An Increase in hole mobility and recombination was observed when 0.3% arsenic, was added into a-Se sample, whereas electron mobility decrease with arsenic addition due to the defect density. The fabricated a-Se:03% As device exhibited the highest X-ray sensitivity.

  • PDF

The effects of As addition on the transport property of a-Se:As films using the moving photo-carrier grating technique

  • Park, Chang-Hee;Lee, Kwang-Sei;Kim, Jeong-Bae;Kim, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.252-253
    • /
    • 2005
  • The effects of As addition in amorphous selenium (a-Se) films on the carrier mobilities and the recombination lifetime have been studied using the moving photo-carrier grating (MPG) measurements. The electron and hole mobility, and recombination lifetime of a-Se films with arsenic (As) additions up to 1% have been obtained. We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film, whereas electron mobility decreases with As addition due to the defect density from shallow traps.

  • PDF

The study of High-efficiency method usign Tri-crystalline Silicon solar cells (삼결정 실리콘 태양전지의 19%변환 효율 최적요건 고찰에 관한 연구)

  • 이욱재;박성현;고재경;김경해;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.318-321
    • /
    • 2002
  • This paper presents a proper condition to achieve high conversion efficiency using PC1D simulator on sri-crystalline Si solar cells. Various efficiency influencing parameters such as rear surface recombination velocity and minority carrier diffusion length in the base region, front surface recombination velocity, junction depth and doping concentration in the Emitter layer, BSF thickness and doping concentration were investigated. Optimized cell parameters were given as rear surface recombination of 1000 cm/s, minority carrier diffusion length in the base region 200 $\mu\textrm{m}$, front surface recombination velocity 100 cm/s, sheet resistivity of emitter layer 100 Ω/$\square$, BSF thickness 5 $\mu\textrm{m}$, doping concentration 5${\times}$10$\^$19/ cm$\^$-3/. Among the investigated variables, we learn that a diffusion length of base layer acts as a key factor to achieve conversion efficiency higher than 19 %.

  • PDF

The moving photocarrier grating technique for the determination of transport parameters in a-Se:As films

  • Park, Chang-Hee;Lee, Kwang-Sei;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.47-48
    • /
    • 2005
  • The moving photocarrier grating(MPG) technique for the determination of the carrier mobilities and the recombination lifetime in a-Se:As films have been studied. The electron and hole drift mobility and the recombination lifetime of a-Se films with arsenic (As) additions have been obtained. We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film. However, the electron mobility exhibits no observable change up to 0.5% As addition in a-Se films.0.3% As added a-Se film also exhibits the maximum short circuit current densities per laser intensity of $5.29\times10^{-7}$ A/W.

  • PDF

The Moving Photocarrier Grating (MPG) Technique for the Transport Properties of α-Se:As Films

  • Park, Chang-Hee;Lee, Kwang-Sei;Kim, Jeong-Bae;Kim, Jae-Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.280-283
    • /
    • 2005
  • The moving photocarrier grating (MPG) technique for the determination of the carrier mobilities and the recombination lifetime of $\alpha$-Se:As films has been studied. The electron and hole drift mobility and the recombination lifetime of $\alpha$-Se films with arsenic (As) additions have been obtained from measurement of the short circuit current density $j_{sc}$ as a function of grating velocity and spatial period. The hole mobility decreases due to defect density of hole traps when x exceeds 0.003, whereas the hole mobility increases for the case of low As addition (x$\le$0.003). We have found an increase in hole drift mobility and recombination lifetime, especially when As with (x = 0.003) is added into the $\alpha$-Se film.

A Study on Optimal Design of Silicon Solar Cell (실리콘 태양전지 최적설계에 관한 연구)

  • ;;;Suresh Kumar Dhungel
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.187-191
    • /
    • 2004
  • In this work, we used the PCID simulator for simulation of solar cell and examined the effect of front-back surface recombination velocity, minority carrier diffusion length, junction depth and emitter sheet-resistance. As the effect of base thickness, the efficiency decreased by the increase in series resistance with the increase of the thickness and found decrease in efficiency by decrease of the current as the effect of the recombination. Also, as the effect of base resistivity, the efficiency increased somewhat with the decrease in resistivity, but when the resistivity exceeded certain value, the efficiency decreased as a increase in the recombination ratio. The optimum efficiency was obtained at the resistivity 0.5 $\Omega$-cm, and thickness $100\mu\textrm{m}$. We have successfully achieved 10.8% and 13.7% efficiency large area($103mm{\times}103mm$) mono-crystalline silicon solar cells without and with PECVD silicon nitride antireflection coating.