• Title/Summary/Keyword: Carleson Measure

Search Result 22, Processing Time 0.015 seconds

REGULARITY OF THE GENERALIZED POISSON OPERATOR

  • Li, Pengtao;Wang, Zhiyong;Zhao, Kai
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.129-150
    • /
    • 2022
  • Let L = -∆ + V be a Schrödinger operator, where the potential V belongs to the reverse Hölder class. In this paper, by the subordinative formula, we investigate the generalized Poisson operator PLt,σ, 0 < σ < 1, associated with L. We estimate the gradient and the time-fractional derivatives of the kernel of PLt,σ, respectively. As an application, we establish a Carleson measure characterization of the Campanato type space 𝒞𝛄L (ℝn) via PLt,σ.

MULTIPLIERS OF DIRICHLET-TYPE SUBSPACES OF BLOCH SPACE

  • Li, Songxiao;Lou, Zengjian;Shen, Conghui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.429-441
    • /
    • 2020
  • Let M(X, Y) denote the space of multipliers from X to Y, where X and Y are analytic function spaces. As we known, for Dirichlet-type spaces 𝓓αp, M(𝓓p-1p, 𝓓q-1q) = {0}, if p ≠ q, 0 < p, q < ∞. If 0 < p, q < ∞, p ≠ q, 0 < s < 1 such that p + s, q + s > 1, then M(𝓓p-2+sp, 𝓓q-2+sq) = {0}. However, X ∩ 𝓓p-1p ⊆ X ∩ 𝓓q-1q and X ∩ 𝓓p-2+sp ⊆ X ∩ 𝓓q-2+sp whenever X is a subspace of the Bloch space 𝓑 and 0 < p ≤ q < ∞. This says that the set of multipliers M(X ∩ 𝓓 p-2+sp, X∩𝓓q-2+sq) is nontrivial. In this paper, we study the multipliers M(X ∩ 𝓓p-2+sp, X ∩ 𝓓q-2+sq) for distinct classical subspaces X of the Bloch space 𝓑, where X = 𝓑, BMOA or 𝓗.