• Title/Summary/Keyword: Cardiac tumour

Search Result 5, Processing Time 0.026 seconds

PROSTAGLANDINS AND THE REGULATION OF TUMOUR CELL GROWTH

  • Bailey, David-Bishop;Jane A. Mitchell
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.1-8
    • /
    • 2001
  • Increased expression of inducible cyclo-oxygenase (COX-2) is associated with a wide variety of tumours. In addition inhibitors of COX have shown a great deal of promise in vitro and in animal models as potential anti-tumour therapies. COX enzymes utilise the substrate arachidonic acid to produce prostaglandin (PO)H$_2$, the precursor to all the prostanoids.(omitted)

  • PDF

Tumour Lysis Syndrome: Implications for Cancer Therapy

  • Mika, Denish;Ahmad, Sabrina;Guruvayoorappan, C.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3555-3560
    • /
    • 2012
  • The tumour lysis syndrome (TLS) is a group of metabolic abnormalities caused by rapid and unexpected release of cellular components into the circulation as a result of massive destruction of rapidly proliferating malignant cells. It usually develops in patients with hematologic malignancies like acute lymphoid leukemia, non-Hodgkin and Burkitt's lymphoma after initiation of chemotherapy or may, rarely, occur spontaneously. Though TLS is seldom observed in relation to solid tumours, there have been reports of connections with examples such as lung, liver, breast, gastric carcinomas. The clinical manifestations of TLS include hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcemia. These indications if untreated lead to life-threatening complications such as acute renal failure, cardiac arrhythmias, seizures, and eventually death due to multiorgan failure. Therefore early detection of TLS is of vital importance. This can be accomplished by identification of high risk patients, implementation of suitable prophylactic measures andmonitoring of the electrolyte levels in patients undergoing chemotherapy.

Expression of β-arrestin 1 in Gastric Cardiac Adenocarcinoma and its Relation with Progression

  • Wang, Li-Guang;Su, Ben-Hua;Du, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5671-5675
    • /
    • 2012
  • Objective: Arrestins act as mediators of G protein-coupled receptor (GPCR) desensitization and trafficking, also actin as a scaffold for many intracellular signaling network. The role that ${\beta}$-arrestin 1 plays in gastric cardiac adenocarcinoma (GCA) and its clinicopathologic significance are untouched. Methods: Fifty patients with gastric cardiac adenocarcinoma were retrospectively enrolled and ${\beta}$-arrestin 1 was detected using immunohistochemistry in tissue samples. Results: Nuclear expression of ${\beta}$-arrestin 1 was observed in 78% of GCA samples (39/50) and cytoplasmic expression in 70% (35/50). ${\beta}$-arrestin 1 could be found in both nucleus and cytoplasm of 54% GCA (27/50) or in either of them in 94% (47/50). ${\beta}$-arrestin 1 protein positivity in well/moderately differentiated carcinomas was significantly higher than that in poorly differentiated carcinomas (P=0.005). We found increased expression of ${\beta}$-arrestin 1 in cytoplasm was correlated with lymph nodal metastasis (P=0.002) and pathological lymph nodal staging (P=0.030). We also found ${\beta}$-arrestin 1 to be over-expressed in glandular epithelia cells of mucinous adenocarcinoma, a tumour type associated with an adverse outcome of gastric cardiac adenocarcinoma (P=0.022). Conclusion: ${\beta}$-arrestin 1 is over-expressed in the nucleus and/or cytoplasm of gastric cardiac adenocarcinoma. However, ${\beta}$-arrestin 1 has no relationship with the prognosis of gastric cardiac adenocarcinoma (P>0.05). Our data imply that ${\beta}$-arrestin 1 in cytoplasm may be involved in differentiation and metastasis of gastric cardiac adenocarcinoma.

Subacute Toxicity of Nerium oleander Ethanolic Extract in Mice

  • Abdou, Rania H.;Basha, Walaa A.;Khalil, Waleed F.
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.233-239
    • /
    • 2019
  • Nerium oleander (N. oleander) is a well-known poisonous shrub that is frequently grown in gardens and public areas and contains numerous toxic compounds. The major toxic components are the cardiac glycosides oleandrin and neriin. The aim of our study was to evaluate the toxic effects of an ethanolic N. oleander leaf extract on haematological, cardiac, inflammatory, and serum biochemical parameters, as well as histopathological changes in the heart. N. oleander extract was orally administered for 14 and 30 consecutive days at doses of 100 and 200 mg of dried extract/kg of body weight in 0.5 mL of saline. The results showed significant increases in mean corpuscular volume, white blood cell counts, platelet counts, interleukins (IL-1 and IL-6), tumour necrosis factor alpha, C reactive protein, alanine aminotransferase, lactate dehydrogenase, creatine kinase and creatine kinase MB, especially at high doses. Marked pathological changes were perceived in the heart tissue. Thus, it can be concluded that exposure to N. oleander leaf extract adversely affects the heart and liver.