• Title/Summary/Keyword: Cardiac magnetic resonance

Search Result 168, Processing Time 0.023 seconds

Retrospective Electrocardiography-Gated Real-Time Cardiac Cine MRI at 3T: Comparison with Conventional Segmented Cine MRI

  • Chen Cui;Gang Yin;Minjie Lu;Xiuyu Chen;Sainan Cheng;Lu Li;Weipeng Yan;Yanyan Song;Sanjay Prasad;Yan Zhang;Shihua Zhao
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.114-125
    • /
    • 2019
  • Objective: Segmented cardiac cine magnetic resonance imaging (MRI) is the gold standard for cardiac ventricular volumetric assessment. In patients with difficulty in breath-holding or arrhythmia, this technique may generate images with inadequate quality for diagnosis. Real-time cardiac cine MRI has been developed to address this limitation. We aimed to assess the performance of retrospective electrocardiography-gated real-time cine MRI at 3T for left ventricular (LV) volume and mass measurement. Materials and Methods: Fifty-one patients were consecutively enrolled. A series of short-axis cine images covering the entire left ventricle using both segmented and real-time balanced steady-state free precession cardiac cine MRI were obtained. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and LV mass were measured. The agreement and correlation of the parameters were assessed. Additionally, image quality was evaluated using European CMR Registry (Euro-CMR) score and structure visibility rating. Results: In patients without difficulty in breath-holding or arrhythmia, no significant difference was found in Euro-CMR score between the two techniques (0.3 ± 0.7 vs. 0.3 ± 0.5, p > 0.05). Good agreements and correlations were found between the techniques for measuring EDV, ESV, EF, SV, and LV mass. In patients with difficulty in breath-holding or arrhythmia, segmented cine MRI had a significant higher Euro-CMR score (2.3 ± 1.2 vs. 0.4 ± 0.5, p < 0.001). Conclusion: Real-time cine MRI at 3T allowed the assessment of LV volume with high accuracy and showed a significantly better image quality compared to that of segmented cine MRI in patients with difficulty in breath-holding and arrhythmia.

Fast Real-Time Cardiac MRI: a Review of Current Techniques and Future Directions

  • Wang, Xiaoqing;Uecker, Martin;Feng, Li
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.252-265
    • /
    • 2021
  • Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-invasive imaging technique for the assessment of global and regional cardiac function. Conventional cardiac MRI is limited by the long acquisition time, the need for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data acquired continuously without synchronization or binning, and therefore of potential interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition and reconstruction techniques must be employed to facilitate real-time cardiac MRI. The goal of this study is to discuss methods that have been developed for real-time cardiac MRI. In particular, we classified existing techniques into two categories based on the use of non-iterative and iterative reconstruction. In addition, we present several research trends in this direction, including deep learning-based image reconstruction and other advanced real-time cardiac MRI strategies that reconstruct images acquired from real-time free-breathing techniques.

Recent Update of Advanced Imaging for Diagnosis of Cardiac Sarcoidosis: Based on the Findings of Cardiac Magnetic Resonance Imaging and Positron Emission Tomography

  • Chang, Suyon;Lee, Won Woo;Chun, Eun Ju
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.2
    • /
    • pp.100-113
    • /
    • 2019
  • Sarcoidosis is a multisystem disease characterized by noncaseating granulomas. Cardiac involvement is known to have poor prognosis because it can manifest as a serious condition such as the conduction abnormality, heart failure, ventricular arrhythmia, or sudden cardiac death. Although early diagnosis and early treatment is critical to improve patient prognosis, the diagnosis of CS is challenging in most cases. Diagnosis usually relies on endomyocardial biopsy (EMB), but its diagnostic yield is low due to the incidence of patchy myocardial involvement. Guidelines for the diagnosis of CS recommend a combination of clinical, electrocardiographic, and imaging findings from various modalities, if EMB cannot confirm the diagnosis. Especially, the role of advanced imaging such as cardiac magnetic resonance (CMR) imaging and positron emission tomography (PET), has shown to be important not only for the diagnosis, but also for monitoring treatment response and prognostication. CMR can evaluate cardiac function and fibrotic scar with good specificity. Late gadolinium enhancement (LGE) in CMR shows a distinctive enhancement pattern for each disease, which may be useful for differential diagnosis of CS from other similar diseases. Effectively, T1 or T2 mapping techniques can be also used for early recognition of CS. In the meantime, PET can detect and quantify metabolic activity and can be used to monitor treatment response. Recently, the use of a hybrid CMR-PET has introduced to allow identify patients with active CS with excellent co-localization and better diagnostic accuracy than CMR or PET alone. However, CS may show various findings with a wide spectrum, therefore, radiologists should consider the possible differential diagnosis of CS including myocarditis, dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy, amyloidosis, and arrhythmogenic right ventricular cardiomyopathy. Radiologists should recognize the differences in various diseases that show the characteristics of mimicking CS, and try to get an accurate diagnosis of CS.

Dilated Cardiomyopathy in Acromegaly: a Case Report with Cardiac MR Findings

  • Kim, Min Seon;Choi, Hye Won;Seo, Yoon Seok;Lee, Whal;Park, Eun Ah
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.4
    • /
    • pp.395-400
    • /
    • 2019
  • Acromegaly is a rare endocrine disorder caused by excessive secretion of the growth hormone. There is a wide range of clinical manifestations from somatic symptoms to respiratory or cardiac failure. Among them, cardiovascular involvement is a leading cause of morbidity and mortality. There are relatively few cases reporting cardiac magnetic resonance imaging (CMR) findings of cardiomyopathy in patients with acromegaly. Thus, we report a case of acromegaly showing dilated cardiomyopathy focusing on the findings of CMR.

Use of Cardiac Computed Tomography and Magnetic Resonance Imaging in Case Management of Atrial Fibrillation with Catheter Ablation

  • Hee-Gone Lee;Jaemin Shim;Jong-il Choi;Young-Hoon Kim;Yu-Whan Oh;Sung Ho Hwang
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.695-708
    • /
    • 2019
  • Atrial fibrillation (AF) is the most common arrhythmia associated with the risk of morbidity and mortality in clinical patients. AF is considered as an arrhythmia type that develops and progresses through close connection with cardiac structural arrhythmogenic substrates. Since the introduction of catheter ablation-mediated electrical isolation of arrhythmogenic substrates, cardiac imaging indicates improved treatment outcome and prognosis with appropriate candidate selection, ablation catheter guidance, and post-ablation follow-up. Currently, cardiac computed tomography (CCT) and cardiovascular magnetic resonance (CMR) imaging are essential in the case management of AF at both pre-and post-procedural stages of catheter ablation. In this review, we discuss the roles and technical considerations of CCT and CMR imaging in the management of patients with AF undergoing catheter ablation.

Delayed Cerebral Metastases from Completely Resected Cardiac Myxoma: Case Report and Review of Literature (완전히 절제된 심장 점액종의 지연된 뇌전이: 증례보고 및 문헌고찰)

  • Kim, Ah-Hyun;Lee, Jae-Wook;Lee, Mi-Kyung;Yoon, Pyeong-Ho;Kim, Min-Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.165-169
    • /
    • 2011
  • Cardiac myxoma is the most common benign tumor of the heart. However, low incidence of recurrence and metastasis has been reported. A 49-year-old female patient was admitted in the hospital due to sudden onset of left side weakness. Magnetic resonance imaging (MRI) of brain showed multifocal areas of diffusion restriction on diffusion weighted images. Echocardiography was performed to evaluate the cause of embolic brain infarction and cardiac myxoma was found in the left atrium. The patient underwent complete excision of the mass. One year later, the patient was readmitted with symptoms of dysarthria. Brain MRI showed newly developed multiple hemorrhagic metastatic lesions. The patient underwent radiotherapy of the metastatic lesions. Although rare, cardiac myxoma can cause delayed metastasis. We report a rare case of delayed multiple cerebral metastases from the completely resected cardiac myxoma.

Treatment Response Evaluation of Cardiac Amyloidosis Using Serial T1- and T2-Mapping Cardiovascular Magnetic Resonance Imaging (T1 지도화 기법 심장 자기공명영상 추적 검사를 이용한 심장 아밀로이드증의 치료 반응 평가)

  • Jinwoo Son;Yoo Jin Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.2
    • /
    • pp.429-434
    • /
    • 2021
  • Amyloidosis is a multisystemic disease characterized by the accumulation of abnormal proteins in extracellular spaces in various organs, with frequent involvement of the myocardium. We report a case of a patient who had cardiac amyloidosis with a trend of reduction in native T1 and T2 values and extracellular volume fraction on serial cardiac magnetic resonance imaging after chemotherapy and stem cell transplantation. The native T1 value and the extracellular volume fraction are closely associated with tissue amyloid burden in amyloidosis patients. This case demonstrated that cardiac magnetic resonance imaging may be used as a non-invasive and quantitative biomarker in the treatment monitoring of amyloidosis.