• Title/Summary/Keyword: Cardiac imaging

Search Result 287, Processing Time 0.028 seconds

Unusual Case of Overt Aortic Dissection Mimicking Aortic Intramural Hematoma

  • Disha, Kushtrim;Kuntze, Thomas;Girdauskas, Evaldas
    • Journal of Chest Surgery
    • /
    • v.49 no.2
    • /
    • pp.126-129
    • /
    • 2016
  • We report an interesting case in which overt aortic dissection mimicked two episodes of aortic intramural hematoma (IMH) (Stanford A, DeBakey I). This took place over the course of four days and had a major influence on the surgical treatment strategy. The first episode of IMH regressed completely within 15 hours after it was clinically diagnosed and verified using imaging techniques. The recurrence of IMH was detected three days thereafter, resulting in an urgent surgical intervention. Overt aortic dissection with evidence of an intimal tear was diagnosed intraoperatively.

How can neurological outcomes be predicted in comatose pediatric patients after out-of-hospital cardiac arrest?

  • Kim, Hyo Jeong
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.5
    • /
    • pp.164-170
    • /
    • 2020
  • The prognosis of patients who are comatose after resuscitation remains uncertain. The accurate prediction of neurological outcome is important for management decisions and counseling. A neurological examination is an important factor for prognostication, but widely used sedatives alter the neurological examination and delay the response recovery. Additional studies including electroencephalography, somatosensory-evoked potentials, brain imaging, and blood biomarkers are useful for evaluating the extent of brain injury. This review aimed to assess the usefulness of and provide practical prognostic strategy for pediatric postresuscitation patients. The principles of prognostication are that the assessment should be delayed until at least 72 hours after cardiac arrest and the assessment should be multimodal. Furthermore, multiple factors including unmeasured confounders in individual patients should be considered when applying the prognostication strategy.

Performance of Prediction Models for Diagnosing Severe Aortic Stenosis Based on Aortic Valve Calcium on Cardiac Computed Tomography: Incorporation of Radiomics and Machine Learning

  • Nam gyu Kang;Young Joo Suh;Kyunghwa Han;Young Jin Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.334-343
    • /
    • 2021
  • Objective: We aimed to develop a prediction model for diagnosing severe aortic stenosis (AS) using computed tomography (CT) radiomics features of aortic valve calcium (AVC) and machine learning (ML) algorithms. Materials and Methods: We retrospectively enrolled 408 patients who underwent cardiac CT between March 2010 and August 2017 and had echocardiographic examinations (240 patients with severe AS on echocardiography [the severe AS group] and 168 patients without severe AS [the non-severe AS group]). Data were divided into a training set (312 patients) and a validation set (96 patients). Using non-contrast-enhanced cardiac CT scans, AVC was segmented, and 128 radiomics features for AVC were extracted. After feature selection was performed with three ML algorithms (least absolute shrinkage and selection operator [LASSO], random forests [RFs], and eXtreme Gradient Boosting [XGBoost]), model classifiers for diagnosing severe AS on echocardiography were developed in combination with three different model classifier methods (logistic regression, RF, and XGBoost). The performance (c-index) of each radiomics prediction model was compared with predictions based on AVC volume and score. Results: The radiomics scores derived from LASSO were significantly different between the severe AS and non-severe AS groups in the validation set (median, 1.563 vs. 0.197, respectively, p < 0.001). A radiomics prediction model based on feature selection by LASSO + model classifier by XGBoost showed the highest c-index of 0.921 (95% confidence interval [CI], 0.869-0.973) in the validation set. Compared to prediction models based on AVC volume and score (c-indexes of 0.894 [95% CI, 0.815-0.948] and 0.899 [95% CI, 0.820-0.951], respectively), eight and three of the nine radiomics prediction models showed higher discrimination abilities for severe AS. However, the differences were not statistically significant (p > 0.05 for all). Conclusion: Models based on the radiomics features of AVC and ML algorithms may perform well for diagnosing severe AS, but the added value compared to AVC volume and score should be investigated further.

Magnetic Resonance Imaging in Thorax (흉부의 자기공명영상)

  • Choi, Byoung Wook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.6
    • /
    • pp.571-584
    • /
    • 2004
  • Magnetic Resonance Imaging (MRI) is one of the most advanced imaging techniques in clinical and research medicine. However, clinical application of MRI to the lung or thorax has been limited due to various drawbacks. Low signal intensity of the lung and cardiac and respiratory movements are the most serious problems with MRI in thorax. Nevertheless, MRI is superior to CT in some selected patients with thoracic diseases. The role of clinical MRI in thoracic disease has been widened with improvement of MR equipments and development of new pulse sequences. Otherwise, functional assessment of lung by MRI has been studied for the last decade. These include perfusion MRI with or without contrast enhancement and ventilation MRI with oxygen-enhancement or hyperpolarized noble gas, $^3He$ and $^{129}Xe$.

Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging (KOSCI) - Part 3: Perfusion, Delayed Enhancement, and T1- and T2 Mapping

  • Im, Dong Jin;Hong, Su Jin;Park, Eun-Ah;Kim, Eun Young;Jo, Yeseul;Kim, Jeong Jae;Park, Chul Hwan;Yong, Hwan Seok;Lee, Jae Wook;Hur, Jee Hye;Yang, Dong Hyun;Lee, Bae-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.1
    • /
    • pp.1-20
    • /
    • 2020
  • This document is the third part of the guidelines for the interpretation and post-processing of cardiac magnetic resonance (CMR) studies. These consensus recommendations have been developed by a Consensus Committee of the Korean Society of Cardiovascular Imaging (KOSCI) to standardize the requirements for image interpretation and post-processing of CMR. This third part of the recommendations describes tissue characterization modules, including perfusion, late gadolinium enhancement, and T1- and T2 mapping. Additionally, this document provides guidance for visual and quantitative assessment, consisting of "What-to-See," "How-To," and common pitfalls for the analysis of each module. The Consensus Committee hopes that this document will contribute to the standardization of image interpretation and post-processing of CMR studies.

2024 Consensus Statement on Coronary Stenosis and Plaque Evaluation in CT Angiography From the Asian Society of Cardiovascular Imaging-Practical Tutorial (ASCI-PT)

  • Cherry Kim;Chul Hwan Park;Bae Young Lee;Chan Ho Park;Eun-Ju Kang;Hyun Jung Koo;Kakuya Kitagawa;Min Jae Cha;Rungroj Krittayaphong;Sang Il Choi;Hwan Seok Yong;Sung Min Ko;Sung Mok Kim;Sung Ho Hwang;Nguyen Ngoc Trang;Whal Lee;Young Jin Kim;Jongmin Lee;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.331-342
    • /
    • 2024
  • The Asian Society of Cardiovascular Imaging-Practical Tutorial (ASCI-PT) is an instructional initiative of the ASCI School designed to enhance educational standards. In 2021, the ASCI-PT was convened with the goal of formulating a consensus statement on the assessment of coronary stenosis and coronary plaque using coronary CT angiography (CCTA). Nineteen experts from four countries conducted thorough reviews of current guidelines and deliberated on eight key issues to refine the process and improve the clarity of reporting CCTA findings. The experts engaged in both online and on-site sessions to establish a unified agreement. This document presents a summary of the ASCI-PT 2021 deliberations and offers a comprehensive consensus statement on the evaluation of coronary stenosis and coronary plaque in CCTA.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Multi-biological Signal-based Smart Trigger System for Cardiac MRI (다중 생체 신호를 이용한 심장 자기공명영상 스마트 트리거 시스템)

  • Yang, Young-Joong;Park, Jinho;Hong, Hye-Jin;Ahn, Chang-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.945-949
    • /
    • 2014
  • In cardiac magnetic resonance imaging (CMRI), heart and respiratory motions are one of main obstacles in obtaining diagnostic quality of images. To synchronize CMRI to the physiological motions, ECG and respiratory gatings are commonly used. In this paper multi-biological signal (ECG, respiratory, and SPO2) based smart trigger system is proposed. By using multi-biological signal, the proposed system is robust to the induced noise such as eddy current when gradient pulsing is continuously applied during the examination. Digital conversion of the multi-biological signal makes the system flexible in implementing smart and intelligent algorithm to detect cardiac and respiratory motion and to reject arrhythmia of the heart. The digital data is used for real-time trigger, as well as signal display, and data storage which may be used for retrospective signal processing.

Successful Removal of a Cardiac Fibroma in Infant (신생아에서 발생한 심장 섬유종의 외과적 치료 -1례 보고-)

  • Kim, Si-Ho;Jo, Beom-Gu;Hong, Yu-Seon
    • Journal of Chest Surgery
    • /
    • v.28 no.5
    • /
    • pp.491-494
    • /
    • 1995
  • A fibroma arising in the right ventricle outflow tract of a 14 month-old infant was successfully removed. The patient was first seen because of shortness of breath and tachycardia. Pertinent clinical and laboratory findings included a grade II/VI systolic murmur, blood pressure of 120/60 mmHg, slight cardiomegaly on chest X-ray, a mass obstructing the outflow tract of the right ventricle on echocardiography and magnetic resonance imaging. On october 30,1992, under cardiopulmonary bypass, a 4cm x 3cm x 3cm tumor was resected from the right ventricular outflow tract, together with a portion of the ventricular wall. Histologically, it was diagnosis as a fibroma. The patient was sent home on the 6th postoperative day following an uneventful recovery form the operation. Although cardiac fibroma is the second most common cardiac tumor in infancy and childhood, it is usually found in the left ventricle and one arising in the right ventricle is considered rare. Although it is a benign tumor, it could produce a severe cardiac dysfunction and even sudden death, depending on its size and location. With the advance in diagnostic techniques and operative management, there is a renewed interest in the early detection and operative removal of these tumors. The case herein presented is the first such case successfully managed and reported in the Korean literature.

  • PDF

Cardiac Tumors (심장종양 6례 보고)

  • 김병주
    • Journal of Chest Surgery
    • /
    • v.18 no.4
    • /
    • pp.667-672
    • /
    • 1985
  • Primary cardiac tumors are uncommon in all age group. In contrast, tumors metastatic to the heart are significantly more common. On rare occasions, tumor may extend into the heart chamber via inferior vena cava from other parts of the body, such as liver, kidney, and uterus cava. With recent advancement in diagnostic imaging modalities and surgical techniques, cardiac tumors are now potentially curably form of heart disease. The most important factor in diagnosing the tumor is a high index of clinical suspicion. Six patients underwent surgical removal of intracardiac tumor during a 5-year period. The mean age of the 4 women and two men was 40 years [range 23 to 60]. All patients were operated on in the last five years of the studied period. All patients had symptoms varying in duration from 1 month to 4 years [average 13 months]. 2-Dimensional echocardiography contributed most to preoperative diagnosis, confirming presence of an intracardiac tumor in all examined patients. Of the six intracardiac tumor, 5 were myxomas [4 left atrial and 1 right ventricular] and one right atrial metastasis from hepatocellular carcinoma of the liver. In all cases, tumor masses were successfully excised. One patient expired after the operation on account of low cardiac out-put syndrome. Remained one patient among six, tumor mass extended into RA and RV with a stalk via IVC. On later follow-up study showed cold area on liver scan [hepatocellular ca.], so she was transferred to internal medicine, department for chemotherapy. Follow up results showed no signs of tumor recurrence in 4 myxoma cases.

  • PDF