• Title/Summary/Keyword: Cardiac fibrosis

Search Result 61, Processing Time 0.026 seconds

20(S)-ginsenoside Rg3 exerts anti-fibrotic effect after myocardial infarction by alleviation of fibroblasts proliferation and collagen deposition through TGFBR1 signaling pathways

  • Honglin Xu;Haifeng Miao;Guanghong Chen;Guoyong Zhang;Yue Hua;Yuting Wu;Tong Xu;Xin Han;Changlei Hu;Mingjie Pang;Leyi Tan;Bin Liu;Yingchun Zhou
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.743-754
    • /
    • 2023
  • Background: Myocardial fibrosis post-myocardial infarction (MI) can induce maladaptive cardiac remodeling as well as heart failure. Although 20(S)-ginsenoside Rg3 (Rg3) has been applied to cardiovascular diseases, its efficacy and specific molecular mechanism in myocardial fibrosis are largely unknown. Herein, we aimed to explore whether TGFBR1 signaling was involved in Rg3's anti-fibrotic effect post-MI. Methods: Left anterior descending (LAD) coronary artery ligation-induced MI mice and TGF-β1-stimulated primary cardiac fibroblasts (CFs) were adopted. Echocardiography, hematoxlin-eosin and Masson staining, Western-blot and immunohistochemistry, CCK8 and Edu were used to study the effects of Rg3 on myocardial fibrosis and TGFBR1 signaling. The combination mechanism of Rg3 and TGFBR1 was explored by surface plasmon resonance imaging (SPRi). Moreover, myocardial Tgfbr1-deficient mice and TGFBR1 adenovirus were adopted to confirm the pharmacological mechanism of Rg3. Results: In vivo experiments, Rg3 ameliorated myocardial fibrosis and hypertrophy and enhanced cardiac function. Rg3-TGFBR1 had the 1.78×10-7 M equilibrium dissociation constant based on SPRi analysis, and Rg3 inhibited the activation of TGFBR1/Smads signaling dose-dependently. Cardiac-specific Tgfbr1 knockdown abolished Rg3's protection against myocardial fibrosis post-MI. In addition, Rg3 downregulated the TGF-β1-mediated CFs growth together with collagen production in vitro through TGFBR1 signaling. Moreover, TGFBR1 adenovirus partially blocked the inhibitory effect of Rg3. Conclusion: Rg3 improves myocardial fibrosis and cardiac function through suppressing CFs proliferation along with collagen deposition by inactivation of TGFBR1 pathway.

Baicalein and wogonin inhibit collagen deposition in SHR and WKY cardiac fibroblast cultures

  • Kong, Ebenezer K.C.;Huang, Yu;Sanderson, John E.;Chan, Kar-Bik;Yu, Shan;Yu, Cheuk-Man
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • In order to demonstrate the potential therapeutic effect of two flavonoids, Baicalein and Wogonin, on suppression of pathological myocardial fibrosis in hypertension, we investigated their in vitro effects on collagen expression in primary cultured cardiac fibroblasts isolated from neonatal normotensive (WKY) and hypertensive (SHR) rats. Our results showed that over-expression of collagen mRNA and protein induced in cardiac fibroblasts by angiotensin (AngII) could be attenuated significantly by both flavonoids at an optimal dosage ($30\;{\mu}M$; P < 0.01). Results of immunoblots showed that expression of 12-LO level, p-ERK/ ERK ratio and MMP-9 in AngII-stimulated SHR cardiac fibroblasts were significantly down-regulated by both flavonoids. Our results show that both Baicalein and Wogonin can suppress collagen deposition in AngII-stimulated SHR and WKY cardiac fibroblasts.

Cardiac Behçet's Disease Presenting with Right Ventricular Endomyocardial Fibrosis and Intracardiac Thrombosis: a Case Report

  • Choi, Eun Ji;Kim, Min Sun;Koo, Hyun Jung;Song, Jae-Kwan;Song, Joo Seon;Kang, Joon-Won;Yang, Dong Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.332-337
    • /
    • 2021
  • Behçet's disease is a chronic inflammatory disorder involving vessels of various sizes and organs, including the skin, joints, gastrointestinal tract, lungs, and cardiovascular system. The etiology of Behçet's disease is unclear, and clinical diagnosis is important in the absence of definitive laboratory or pathological findings diagnostic of Behçet's disease. Cardiac involvement is rare but might present as endocarditis, myocarditis, pericarditis, or intracardiac thrombosis. This report presents a case of Behçet's disease involving the heart in a 22-year-old man with unusual manifestations of right ventricular fibrosis and intracardiac thrombosis. Cardiac magnetic resonance imaging revealed multiple intracardiac thrombi and delayed diffuse subendocardial enhancement involving the right ventricle. No peripheral eosinophilia was detected. Endomyocardial biopsy showed mixed inflammatory cell infiltrates. Based on the patient's clinical history of oral ulcer and arthritis, a diagnosis of Behçet's disease was made considering the clinical, radiological, and histological findings. Intracardiac thrombi and endomyocardial fibrosis are rare manifestations of Behçet's disease, and the diagnosis is often a clinical challenge. Early diagnosis is important for appropriate management. Behçet's disease should be considered in the differential diagnosis of patients with intracardiac thrombosis and endomyocardial fibrosis of the right chamber.

Salubrinal Alleviates Pressure Overload-Induced Cardiac Hypertrophy by Inhibiting Endoplasmic Reticulum Stress Pathway

  • Rani, Shilpa;Sreenivasaiah, Pradeep Kumar;Cho, Chunghee;Kim, Do Han
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.66-72
    • /
    • 2017
  • Pathological hypertrophy of the heart is closely associated with endoplasmic reticulum stress (ERS), leading to maladaptations such as myocardial fibrosis, induction of apoptosis, and cardiac dysfunctions. Salubrinal is a known selective inhibitor of protein phosphatase 1 (PP1) complex involving dephosphorylation of phospho-eukaryotic translation initiation factor 2 subunit $(p-eIF2)-{\alpha}$, the key signaling process in the ERS pathway. In this study, the effects of salubrinal were examined on cardiac hypertrophy using the mouse model of transverse aortic constriction (TAC) and cell model of neonatal rat ventricular myocytes (NRVMs). Treatment of TAC-induced mice with salubrinal ($0.5mg{\cdot}kg^{-1}{\cdot}day^{-1}$) alleviated cardiac hypertrophy and tissue fibrosis. Salubrinal also alleviated hypertrophic growth in endothelin 1 (ET1)-treated NRVMs. Therefore, the present results suggest that salubrinal may be a potentially efficacious drug for treating pathological cardiac remodeling.

Neogambogic acid relieves myocardial injury induced by sepsis via p38 MAPK/NF-κB pathway

  • Fu, Wei;Fang, Xiaowei;Wu, Lidong;Hu, Weijuan;Yang, Tao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.511-518
    • /
    • 2022
  • Sepsis-associated myocardial injury, an invertible myocardial depression, is a common complication of sepsis. Neogambogic acid is an active compound in garcinia and exerts anthelmintic, anti-inflammatory, and detoxification properties. The role of neogambogic acid in sepsis-associated myocardial injury was assessed. Firstly, mice were pretreated with neogambogic acid and then subjected to lipopolysaccharide treatment to induce sepsis. Results showed that lipopolysaccharide treatment induced up-regulation of biomarkers involved in cardiac injury, including lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and troponin I (cTnI). However, pretreatment with neogambogic acid reduced levels of LDH, CK-MB, and cTnI, and ameliorated histopathological changes in the heart tissues of septic mice. Secondly, neogambogic acid also improved cardiac function in septic mice through reduction in left ventricular end-diastolic pressure, and enhancement of ejection fraction, fractional shortening, and left ventricular systolic mean pressure. Moreover, neogambogic acid suppressed cardiac apoptosis and inflammation in septic mice and reduced cardiac fibrosis. Lastly, protein expression of p-p38, p-JNK, and p-NF-κB in septic mice was decreased by neogambogic acid. In conclusion, neogambogic acid exerted anti-apoptotic, anti-fibrotic, and anti-inflammatory effects in septic mice through the inactivation of MAPK/NF-κB pathway.

Exercise induced Right Ventricular Fibrosis is Associated with Myocardial Damage and Inflammation

  • Rao, Zhijian;Wang, Shiqiang;Bunner, Wyatt Paul;Chang, Yun;Shi, Rengfei
    • Korean Circulation Journal
    • /
    • v.48 no.11
    • /
    • pp.1014-1024
    • /
    • 2018
  • Background and Objectives: Intense exercise (IE) induced myocardial fibrosis (MF) showed contradictory findings in human studies, making the relationship between IE and the development of MF unclear. This study aims to demonstrate exercise induced MF is associated with cardiac damage, and inflammation is essential to the development of exercise induced MF. Methods: Sprague-Dawley rats were submitted to daily 60-minutes treadmill exercise sessions at vigorous or moderate intensity, with 8-, 12-, and 16-week durations; time-matched sedentary rats served as controls. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum cardiac troponin I (cTnI) concentration. After completion of the exercise protocol rats were euthanized. Biventricular morphology, ultrastructure, and collagen deposition were then examined. Protein expression of interleukin $(IL)-1{\beta}$ and monocyte chemotactic protein (MCP)-1 was evaluated in both ventricles. Results: After IE, right but not left ventricle (LV) MF occurred. Serum cTnI levels increased and right ventricular damage was observed at the ultrastructure level in rats that were subjected to long-term IE. Leukocyte infiltration into the right ventricle (RV) rather than LV was observed after long-term IE. Long-term IE also increased protein expression of proinflammation factors including $IL-1{\beta}$ and MCP-1 in the RV. Conclusions: Right ventricular damage induced by long-term IE is pathological and the following inflammatory response is essential to the development of exercise induced MF.

Clinical Analysis of 622 Cases of Open Heart Surgery (1986 년 개심술 622례에 대한 임상적 고찰)

  • 박표원
    • Journal of Chest Surgery
    • /
    • v.20 no.3
    • /
    • pp.489-497
    • /
    • 1987
  • Six hundred and twenty two cases of open heart surgery were performed at Sejong General Hospital in 1986. And also, 117 cases of non open heart cardiac surgery had been performed during same period. Among the 622 open heart cases, 548 were congenital cardiac diseases and 74 were acquired heart diseases. In congenital heart patients, 422 were acyanotic and 126 were cyanotic. There were 52 cases of infant open heart Surgery below 12 months. Acyanotic group were consisted of 314 VSD, 66 ASD, 13 AVSD, 9 PDA, 8 ASD + PS, 4 AS, and 8 other rare cardiac cases. And cyanotic group were consisted of 84 TOF, 15 DORV, 5 Trilogy, 4 Ebstein`s anomaly, 3 PS + TR, 3 TGA, 3 TAPVR, 3 Pulmonary atresia and 6 other rare cardiac diseases. Majority of the acquired heart cases were valvular heart diseases. And there were also 4 cardiac myxoma and one endomyocardial fibrosis in acquired heart disease group. The operative results were as follows: Overall operative mortality, 5.3%: acyanotic 2.4%: cyanotic 15.8% and acquired heart disease, 8.5%.

  • PDF

Molecular Signatures of Sinus Node Dysfunction Induce Structural Remodeling in the Right Atrial Tissue

  • Roh, Seung-Young;Kim, Ji Yeon;Cha, Hyo Kyeong;Lim, Hye Young;Park, Youngran;Lee, Kwang-No;Shim, Jaemin;Choi, Jong-Il;Kim, Young-Hoon;Son, Gi Hoon
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.408-418
    • /
    • 2020
  • The sinus node (SN) is located at the apex of the cardiac conduction system, and SN dysfunction (SND)-characterized by electrical remodeling-is generally attributed to idiopathic fibrosis or ischemic injuries in the SN. SND is associated with increased risk of cardiovascular disorders, including syncope, heart failure, and atrial arrhythmias, particularly atrial fibrillation. One of the histological SND hallmarks is degenerative atrial remodeling that is associated with conduction abnormalities and increased right atrial refractoriness. Although SND is frequently accompanied by increased fibrosis in the right atrium (RA), its molecular basis still remains elusive. Therefore, we investigated whether SND can induce significant molecular changes that account for the structural remodeling of RA. Towards this, we employed a rabbit model of experimental SND, and then compared the genome-wide RNA expression profiles in RA between SND-induced rabbits and sham-operated controls to identify the differentially expressed transcripts. The accompanying gene enrichment analysis revealed extensive pro-fibrotic changes within 7 days after the SN ablation, including activation of transforming growth factor-β (TGF-β) signaling and alterations in the levels of extracellular matrix components and their regulators. Importantly, our findings suggest that periostin, a matricellular factor that regulates the development of cardiac tissue, might play a key role in mediating TGF-β-signaling-induced aberrant atrial remodeling. In conclusion, the present study provides valuable information regarding the molecular signatures underlying SND-induced atrial remodeling, and indicates that periostin can be potentially used in the diagnosis of fibroproliferative cardiac dysfunctions.

Ruptured Aneurysm of Sinus Valsalva (대동맥 동맥루 파열 9례 보고)

  • Yoon, Yu-Joon;Cho, Bum-Koo;Hong, Seung-Nok
    • Journal of Chest Surgery
    • /
    • v.11 no.4
    • /
    • pp.373-377
    • /
    • 1978
  • Aneurysmal rupture of sinus Valsalva is known as one of rare cardiac disease and not controlled with medical treatment. We experienced 9 cases which were composed with 7 case of male and 2 cases of female during last 15 years. 7 cases were ruptured into right ventricle from right. coronary sinus and 2 cases were ruptured into right atrium from non-coronary sinus. The diagnosis was made with cardiac catheteriza1icn and cineangiccardicgram but 2 cases were misdiagnosed with only cardiac catheterization. All cases were corrected under cardiopulmonary bypass with means of direct suture with tdlon pledget by transatrial or transventricular approach. All were not confirmed in it's origin because of no history, no evidences of syphilis, TB, or bacterial endocarditis and only fibrosis in pathologic report. In postoperative course, 1 case had postoperative bleeding and 1 case was sufferd from left hemiplegia due to may be air embolism. Follow up study revealed all patient go on their usual life well with good improvement at this present time.

  • PDF

Triptolide improves myocardial fibrosis in rats through inhibition of nuclear factor kappa B and NLR family pyrin domain containing 3 inflammasome pathway

  • Shen, Jianyao;Ma, Hailiang;Wang, Chaoquan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.533-543
    • /
    • 2021
  • Myocardial fibrosis (MF) is the result of persistent and repeated aggravation of myocardial ischemia and hypoxia, leading to the gradual development of heart failure of chronic ischemic heart disease. Triptolide (TPL) is identified to be involved in the treatment for MF. This study aims to explore the mechanism of TPL in the treatment of MF. The MF rat model was established, subcutaneously injected with isoproterenol and treated by subcutaneous injection of TPL. The cardiac function of each group was evaluated, including LVEF, LVFS, LVES, and LVED. The expressions of ANP, BNP, inflammatory related factors (IL-1β, IL-18, TNF-α, MCP-1, VCAM1), NLRP3 inflammasome factors (NLRP3, ASC) and fibrosis related factors (TGF-β1, COL1, and COL3) in rats were dete cted. H&E staining and Masson staining were used to observe myocardial cell inflammation and fibrosis of rats. Western blot was used to detect the p-P65 and t-P65 levels in nucleoprotein of rat myocardial tissues. LVED and LVES of MF group were significantly upregulated, LVEF and LVFS were significantly downregulated, while TPL treatment reversed these trends; TPL treatment downregulated the tissue injury and improved the pathological damage of MF rats. TPL treatment downregulated the levels of inflammatory factors and fibrosis factors, and inhibited the activation of NLRP3 inflammasome. Activation of NLRP3 inflammasome or NF-κB pathway reversed the effect of TPL on MF. Collectively, TPL inhibited the activation of NLRP3 inflammasome by inhibiting NF-κB pathway, and improved MF in MF rats.