• Title/Summary/Keyword: Cardiac SPECT

Search Result 56, Processing Time 0.027 seconds

Pulling Bowstring of Gated Myocardial SPECT (게이트 심근 SPECT : 도약을 위한 준비)

  • Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.433-435
    • /
    • 1998
  • Recent progress of technology permits us to assess ventricular function and wall motion as well as myocardial perfusion using electrocardiographic gated myocardial perfusion single photon emission computed tomography (GM-SPECT). It is interesting that echocardiography and magnetic resonance imaging are moving in the same direction with the use of contrast medium to assess myocardial perfusion. A valid fundamental basis for a new technology is essential for a successful competition. Lee et al. report in this issue the reproducibility of serial measurement of left ventricular function including systolic wall thickening using a novel statistical method. It has important implications such as nitroglycerin or dobutamine application during GM-SPECT. The field of nuclear cardiology must continue to strive toward more sophisticated but straightforward evaluation of cardiac diseases.

  • PDF

Performance of Gated Myocardial Perfusion SPECT to Diagnose Coronary Artery Disease (게이트 심근 관류 SPECT의 관상 동맥 질환 진단 성능)

  • Kang, Won-Jun;Lee, Myoung-Mook;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.50-56
    • /
    • 1997
  • Gated SPECT can evaluate the regional wall motion of the heart. We evaluated the regional wall motion of the perfusion abnormality in conventional perfusion SPECT with gated SPECT. In case of suspicious perfusion abnormalities, we tried to differentiate the artifact from true abnormality in coronary vascular disease using gated SPECT. We thought that artifacts would have normal wall motion, whereas fixed defects with decreased wall motion would probably represent coronary artery disease. A total of 275 patients who were performed coronary angiography and T1-201 rest/Tc-99m MIBI dipyridamole stress gated SPECT within 2 months were enrolled. In coronary angiography, stenosis more than 50% was considered as coronary artery disease. After injection of 111MBq T1-201 rest image was obtained on triple head SPECT system. 370MBg Tc-99m MIBI was used for the stress image. Eight-frame per-cardiac-cycle gated Tc-99m SPECT studies were done. All the images were analyzed visually. Using perfusion SPECT, the overall sensitivity and specificity were 87% and 55% respectively. Regarding artery territory, sensitivity and specificity were 68% and 73% for left anterior descending artery(LAD), 62% and 78% for right coronary artery(RCA), 42% and 90% for left ciramflex artery(LCX). Using gated SPECT, the overall sensitivity and specificity were 87% and 66% respectively. Sensitivity and specificity were 68% and 78% for LAD, 62% and 79% for RCA, 42% and 90% for LCX. Among 21 false positive cases in perfusion SPECT, 5 cases were interpreted as true negative with gated SPECT. We conclude that gated SPECT provides a valuable adjunct to perfusion SPECT in characterizing perfusion abnormalities and to improve specificity.

  • PDF

Current Status and Future Perspective of Nuclear Cardiology (심장핵의학의 현황과 전망)

  • Chung, June-Key
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.159-164
    • /
    • 2009
  • Coronary artery disease is on the rise over the world. Myocardial perfusion SPECT is a well established technique to detect coronary artery disease and to assess left ventricular function. In addition, it has the unique ability to predict the prognosis of the patients. Moreover, the application of ECC-gated images provided the quantitatve data and improved the accuracy. This approach has been proved to be cost-effective and suitable for the emerging economies as well as developed countries. However, the utilization of nuclear cardiology procedures vary widely considering the different countries and region of the world. Korea exits 2-3 times less utilization than Japan, and 20 times than the United States. Recently, with the emerging of new technology, namely cardiac CT, cardiac MR and stress echocardiography, the clinical usefulness of nuclear cardiology has been called in question and its role has been redefined. For the proper promotion of nuclear cardiology, special educations should be conducted since the nuclear cardiology has the contact points between nuclear medicine and cardiology. Several innovations are in horizon which will impact the diagnostic accuracy as well as imaging time and cost savings. Development of new tracers, gamma camera technology and hybrid systems will open the new avenue in cardiac imaging. The future of nuclear cardiology based on molecular imaging is very exciting. The newly defined biologic targets involving atherosclerosis and vascular vulnerability will allow the answers for the key clinical questions. Hybrid techniques including SPECT/CT indicate the direction in which clinical nuclear cardiology may be headed in the immediate future. To what extent nuclear cardiology will be passively absorbed by other modalities, or will actively incorporate other modalities, is up to the present and next generation of nuclear cardiologists.

Prognostic Value of Normal Exercise $^{99m}Tc$-MIBI Myocardial Perfusion SPECT: Comparison with Exercise Electrocardiography and Coronary Angiography ($^{99m}Tc$-MIBI 운동부하 심근관류 SPECT에서 정상소견을 보인 환자의 예후: 운동부하 심전도와 관동맥 조영소견과의 비교)

  • Lee, Sang-Woo;Lee, Jae-Tae;Chun, Kyung-Ah;Kang, Do-Young;Kim, Dong-Hwan;Cho, Yong-Keun;Chae, Shung-Chull;Lee, Kyu-Bo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.3
    • /
    • pp.199-206
    • /
    • 2000
  • Purpose: Myocardial perfusion scintigraphy is a useful technique to diagnose and to predict prognosis in patients with suspected or known coronary artery disease. The purpose of the present study is to evaluate the prognostic value of normal exercise $^{99m}Tc$-MIBI myocardial perfusion single photon emission computed tomography (SPECT) and to analyze results with regard to those of exercise electrocardiography or coronary angiography. Materials and Methods: We evaluated 301 patients (mean age $52{\pm}10$ years, 166 males and 135 females) with normal exercise $^{99m}Tc$-MIBI myocardial perfusion SPECT performed for suspected coronary artery disease. Subject were evaluated for cardiac events and followed for 8-55 months (mean $19{\pm}10$ months) after imaging. Results: During the follow-up period, there was no cardiac death but only one non-fatal myocardial infarction (event rate 0.21% per year). In addition, only one patient underwent coronary revascularization. There was no significant difference in cardiac event rate between patients with positive (n=27) and negative (n=235) exercise electrocardiography (p:NS). There was no cardiac event in 17 patients who underwent coronary angiography (4 patients with >50% luminal narrowing, 2 patients with vasospasm and 11 patients with no significant lesion). Conclusion: Patients with normal exercise $^{99m}Tc$-MIBI myocardial perfusion SPECT has a very low risk for cardiac events regardless of exercise electrocardiographic and coronary angiographic findings.

  • PDF

Development of Evaluation Method of Regional Contractility of Left Ventricle Using Gated Myocardial SPECT and Assessment of Reproducibility (게이트 심근 SPECT를 이용한 좌심실의 국소탄성률 평가방법 개발 및 재현성 평가)

  • Lee, Byeong-Il;Lee, Dong-Soo;Lee, Jae-Sung;Kang, Won-Jun;Chung, June-Key;Lee, Myung-Chul;Choi, Heung-Kook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.355-363
    • /
    • 2003
  • Purpose: Regional contractility can be calculated using the regional volume change of left ventricle measured by gated myocardial SPECT image and curve of central artery pressure obtained from radial artery pressure data. In this study, a program to obtain the regional contractility was developed, and reproducibility of regional contractility measurement was assessed. Materials and Methods: Seven patients(male:female=5:2, $58{\pm}11.9$ years) with coronary artery diseases underwent gated Tc-99m MIBI myocardial SPECT twice without delay between two scans. Regional volume change of left ventricle was estimated using CSA (Cardiac SPECT Analyzer) software developed in this study. Regional contractility was iteratively estimated from the time-elastance curve obtained using the time-pressure curve and regional time-volume curve. Reproducibility of regional contractility measurement assessed by comparing the contractility values measured twice from the same SPECT data and by comparing those measured from the pair of SPECT data obtained from a same patient. Results: Measured regional contractility was $3.36{\pm}3.38{mm}Hg/mL$ using 15-segment model, $3.16{\pm}2.25{mm}Hg/mL$ using 7-segment model, and $3.11{\pm}2.57{mm}Hg/mL$ using 5-segment model. The harmonic average of regional contractility value was almost identical to the global contractility. Correlation coefficient of regional contractility values measured twice from the same data was greater than 0.97 for all models, and two standard deviations of contractility difference on Bland Altman plot were 1.5%, 1.0%, and 0.9% for 15-, 7-, and 5-segment models, respectively. Correlation coefficient of regional contractility values measured from the pair of SPECT data obtained from a same patient was greater than 0.95 for all models, and two standard deviations on Bland Altman plot were 2.2%, 1.0%, and 1.2%. Conclusion: Regional contractility of left ventricle measured using developed software in this study was reproducible. Regional contractility of left ventricle will be a new useful index for myocardial function after analysis of the clinical data.

Evaluation and Comparison of Myocardial Perfusion Defects in Patients with Early Breast Cancer Subjected to Different Radiation Simulation Techniques (조기유방암 환자에서 방사선 모의치료 방법의 차이에 따른 심근관류결손의 비교 평가)

  • Nam, Ji-Ho;Ki, Yong-Kan;Kim, Dong-Won;Kim, Won-Taek
    • Radiation Oncology Journal
    • /
    • v.25 no.1
    • /
    • pp.26-33
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: The aim of this study is to evaluate and compare the incidence and aspects of myocardial perfusion defects in patients who were subjected to either two-dimensional or three-dimensional simulation techniques for early left-sided breast cancer. The myocardial perfusion defects were determined from using single photon emitted computerized tomography (SPECT) myocardial perfusion images. $\underline{Materials\;and\;Methods}$: Between January 2002 and August 2003, 32 patients were enrolled in this study. The patients were diagnosed as having early (AJCC stage T1-T2N0M0) left-sided breast cancer and were treated with tangential irradiation after breast-conserving surgery and systemic chemotherapy. The patients were divided into two groups according to the type of simulation received: two-dimensional simulation using an X-ray fluoroscope simulator or three-dimensional simulation with a CT simulator. All patients underwent technetium-99m-sestamibi gated perfusion SPECT at least 3 years after radiotherapy. The incidence and area of myocardial perfusion defects were evaluated and were compared in the two groups, and at the same time left ventricular ejection fraction and cardiac wall motion were also analyzed. The cardiac volume included in the radiation fields was calculated and evaluated to check for a correlation between the amount of irradiated cardiac volume and aspects of myocardial perfusion defects. $\underline{Results}$: A myocardial perfusion defect was detected in 11 of 32 patients (34.4%). There were 7 (46.7%) perfusion defect cases in 15 patients who underwent the two-dimensional simulation technique and 4 (23.5%) patients with perfusion defects in the three-dimensional simulation group (p=0.0312). In 10 of 11 patients who had myocardial perfusion changes, the perfusion defects were observed in the cardiac apex. The left ventricular ejection fraction was within the normal range and cardiac wall motion was normal in all patients. The irradiated cardiac volume of patients in the three-dimensional simulation group was less than that of patients who received the two-dimensional simulation technique, but there was no statistical significance as compared to the incidence of perfusion defects. $\underline{Conclusion}$: Radiotherapy with a CT simulator (three-dimensional simulation technique) for early left-sided breast cancer may reduce the size of the irradiated cardiac volume and the incidence of myocardial perfusion defects. Further investigation and a longer follow-up duration are needed to analyze the relationship between myocardial perfusion defects and clinical ischemic heart disease.

Compared Performance of Semiconductor SPECT in Myocardial Perfusion SPECT: Phantom study (범용 신틸레이터 감마카메라와 심근전용 반도체 감마카메라의 성능 비교 연구)

  • Bahn, Young Kag;Hwang, Dong Hoon;Kim, Jung Yul;Kang, Chun Koo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.49-53
    • /
    • 2016
  • Purpose Recently, Cadmium-zinc-telluride (CZT) semiconductor myocardial SPECT (Single Photon Emission Computed Tomography) has been used myocardial scintigraphy. In this study, the performance of Semiconductor SPECT and conventional SPECT systems was compared by a comprehensive analysis of phantom SPECT images. Materials and Methods Methods: We evaluated the DSPECT CZT SEPCT (Spectrum-dynamic) and INFINA conventional (GE). Physical performance was compared on reconstructed SPECT images from a phantom. Results For count sensitivity on cardiac phantom images ($counts{\cdot}sec^{-1}{\cdot}MBq^{-1}$), DSPECT had a sensitivity of conventional SPECT. This classification was similar to that of myocardial counts normalized to injected activities from phantom images (respective mean values, $counts{\cdot}sec^{-1}{\cdot}MBq^{-1}$: 195.83 and 52.83). For central spatial resolution: DSPECT, 9.47mm; conventional SPECT, 16.90mm. For contrast-to-noise ratio on the phantom: DSPECT, 4.2; conventional SPECT, 3.6. Conclusion The performance of CZT cameras is dramatically higher than that of conventional SPECT. However, CZT cameras differ in that spatial resolution and contrast-to-noise ratio are better with conventional SPECT, whereas count sensitivity is markedly higher with the DSPECT.

  • PDF

Development of Gated Myocardial SPECT Analysis Software and Evaluation of Left Ventricular Contraction Function (게이트 심근 SPECT 분석 소프트웨어의 개발과 좌심실 수축 기능 평가)

  • Lee, Byeong-Il;Lee, Dong-Soo;Lee, Jae-Sung;Chung, June-Key;Lee, Myung-Chul;Choi, Heung-Kook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.2
    • /
    • pp.73-82
    • /
    • 2003
  • Objectives: A new software (Cardiac SPECT Analyzer: CSA) was developed for quantification of volumes and election fraction on gated myocardial SPECT. Volumes and ejection fraction by CSA were validated by comparing with those quantified by Quantitative Gated SPECT (QGS) software. Materials and Methods: Gated myocardial SPECT was peformed in 40 patients with ejection fraction from 15% to 85%. In 26 patients, gated myocardial SPECT was acquired again with the patients in situ. A cylinder model was used to eliminate noise semi-automatically and profile data was extracted using Gaussian fitting after smoothing. The boundary points of endo- and epicardium were found using an iterative learning algorithm. Enddiastolic (EDV) and endsystolic volumes (ESV) and election fraction (EF) were calculated. These values were compared with those calculated by QGS and the same gated SPECT data was repeatedly quantified by CSA and variation of the values on sequential measurements of the same patients on the repeated acquisition. Results: From the 40 patient data, EF, EDV and ESV by CSA were correlated with those by QGS with the correlation coefficients of 0.97, 0.92, 0.96. Two standard deviation (SD) of EF on Bland Altman plot was 10.1%. Repeated measurements of EF, EDV, and ESV by CSA were correlated with each other with the coefficients of 0.96, 0.99, and 0.99 for EF, EDV and ESV respectively. On repeated acquisition, reproducibility was also excellent with correlation coefficients of 0.89, 0.97, 0.98, and coefficient of variation of 8.2%, 5.4mL, 8.5mL and 2SD of 10.6%, 21.2mL, and 16.4mL on Bland Altman plot for EF, EDV and ESV. Conclusion: We developed the software of CSA for quantification of volumes and ejection fraction on gated myocardial SPECT. Volumes and ejection fraction quantified using this software was found valid for its correctness and precision.

Added Value of 3D Cardiac SPECT/CTA Fusion Imaging in Patients with Reversible Perfusion Defect on Myocardial Perfusion SPECT (심근관류 SPECT에서 가역적인 병변을 보인 환자의 3차원 심장 SPECT/CTA 퓨전영상의 유용성)

  • Kong, Eun-Jung;Cho, Ihn-Ho;Kang, Won-Jun;Kim, Seong-Min;Won, Kyoung-Sook;Lim, Seok-Tae;Hwang, Kyung-Hoon;Lee, Byeong-Il;Bom, Hee-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.6
    • /
    • pp.513-518
    • /
    • 2009
  • Purpose: Integration of the functional information of myocardial perfusion SPECT (MPS) and the morphoanatomical information of coronary CT angiography (CTA) may provide useful additional diagnostic information of the spatial relationship between perfusion defects and coronary stenosis. We studied to know the added value of three dimensional cardiac SPECT/CTA fusion imaging (fusion image) by comparing between fusion image and MPS. Materials and Methods: Forty-eight patients (M:F=26:22, Age: $63.3{\pm}10.4$ years) with a reversible perfusion defect on MPS (adenosine stress/rest SPECT with Tc-99m sestamibi or tetrofosmin) and CTA were included. Fusion images were molded and compared with the findings from the MPS. Invasive coronary angiography served as a reference standard for fusion image and MPS. Results: Total 144 coronary arteries in 48 patients were analyzed; Fusion image yielded the sensitivity, specificity, negative and positive predictive value for the detection of hemodynamically significant stenosis per coronary artery 82.5%, 79.3%, 76.7% and 84.6%, respectively. Respective values for the MPS were 68.8%, 70.7%, 62.1% and 76.4%. And fusion image also could detect more multi-vessel disease. Conclusion: Fused three dimensional volume-rendered SPECT/CTA imaging provides intuitive convincing information about hemodynamic relevant lesion and could improved diagnostic accuracy.

The Influence Evaluation of $^{201}Tl$ Myocardial Perfusion SPECT Image According to the Elapsed Time Difference after the Whole Body Bone Scan (전신 뼈 스캔 후 경과 시간 차이에 따른 $^{201}Tl$ 심근관류 SPECT 영상의 영향 평가)

  • Kim, Dong-Seok;Yoo, Hee-Jae;Ryu, Jae-Kwang;Yoo, Jae-Sook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.67-72
    • /
    • 2010
  • Purpose: In Asan Medical Center we perform myocardial perfusion SPECT to evaluate cardiac event risk level for non-cardiac surgery patients. In case of patients with cancer, we check tumor metastasis using whole body bone scan and whole body PET scan and then perform myocardial perfusion SPECT to reduce unnecessary exam. In case of short term in patients, we perform $^{201}Tl$ myocardial perfusion SPECT after whole body bone scan a minimum 16 hours in order to reduce hospitalization period but it is still the actual condition in which the evaluation about the affect of the crosstalk contamination due to the each other dissimilar isotope administration doesn't properly realize. So in our experiments, we try to evaluate crosstalk contamination influence on $^{201}Tl$ myocardial perfusion SPECT using anthropomorphic torso phantom and patient's data. Materials and Methods: From 2009 August to September, we analyzed 87 patients with $^{201}Tl$ myocardial perfusion SPECT. According to $^{201}Tl$ myocardial perfusion SPECT yesterday whole body bone scan possibility of carrying out, a patient was classified. The image data are obtained by using the dual energy window in $^{201}Tl$ myocardial perfusion SPECT. We analyzed $^{201}Tl$ and $^{99m}Tc$ counts ratio in each patients groups obtained image data. We utilized anthropomorphic torso phantom in our experiment and administrated $^{201}Tl$ 14.8 MBq (0.4 mCi) at myocardium and $^{99m}Tc$ 44.4 MBq (1.2 mCi) at extracardiac region. We obtained image by $^{201}Tl$ myocardial perfusion SPECT without gate method application and analyzed spatial resolution using Xeleris ver 2.0551. Results: In case of $^{201}Tl$ window and the counts rate comparison result yesterday whole body bone scan of being counted in $^{99m}Tc$ window, the difference in which a rate to 24 hours exponential-functionally notes in 1:0.114 with Ventri (GE Healthcare, Wisconsin, USA), 1:0.249 after the bone tracer injection in 12 hours in 1:0.411 with 1:0.79 with Infinia (GE healthcare, Wisconsin, USA) according to a reduction a time-out was shown (Ventri p=0.001, Infinia p=0.001). Moreover, the rate of the case in which it doesn't perform the whole body bone scan showed up as the average 1:$0.067{\pm}0.6$ of Ventri, and 1:$0.063{\pm}0.7$ of Infinia. According to the phantom after experiment spatial resolution measurement result, and an addition or no and time-out of $^{99m}Tc$ administrated, it doesn't note any change of FWHM (p=0.134). Conclusion: Through the experiments using anthropomorphic torso phantom and patients data, we found that $^{201}Tl$ myocardium perfusion SPECT image later carried out after the bone tracer injection with 16 hours this confirmed that it doesn't receive notable influence in spatial resolution by $^{99m}Tc$. But this investigation is only aimed to image quality, so it needs more investigation in patient's radiation dose and exam accuracy and precision. The exact guideline presentation about the exam interval should be made of the validation test which is exact and in which it is standardized about the affect of the crosstalk contamination according to the isotope use in which it is different later on.

  • PDF