Compared Performance of Semiconductor SPECT in Myocardial Perfusion SPECT: Phantom study

범용 신틸레이터 감마카메라와 심근전용 반도체 감마카메라의 성능 비교 연구

  • Bahn, Young Kag (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Hwang, Dong Hoon (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Kim, Jung Yul (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Kang, Chun Koo (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Kim, Jae Sam (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System)
  • 반영각 (연세의료원 세브란스병원 핵의학과) ;
  • 황동훈 (연세의료원 세브란스병원 핵의학과) ;
  • 김정열 (연세의료원 세브란스병원 핵의학과) ;
  • 강천구 (연세의료원 세브란스병원 핵의학과) ;
  • 김재삼 (연세의료원 세브란스병원 핵의학과)
  • Received : 2016.09.26
  • Accepted : 2016.10.05
  • Published : 2016.10.29

Abstract

Purpose Recently, Cadmium-zinc-telluride (CZT) semiconductor myocardial SPECT (Single Photon Emission Computed Tomography) has been used myocardial scintigraphy. In this study, the performance of Semiconductor SPECT and conventional SPECT systems was compared by a comprehensive analysis of phantom SPECT images. Materials and Methods Methods: We evaluated the DSPECT CZT SEPCT (Spectrum-dynamic) and INFINA conventional (GE). Physical performance was compared on reconstructed SPECT images from a phantom. Results For count sensitivity on cardiac phantom images ($counts{\cdot}sec^{-1}{\cdot}MBq^{-1}$), DSPECT had a sensitivity of conventional SPECT. This classification was similar to that of myocardial counts normalized to injected activities from phantom images (respective mean values, $counts{\cdot}sec^{-1}{\cdot}MBq^{-1}$: 195.83 and 52.83). For central spatial resolution: DSPECT, 9.47mm; conventional SPECT, 16.90mm. For contrast-to-noise ratio on the phantom: DSPECT, 4.2; conventional SPECT, 3.6. Conclusion The performance of CZT cameras is dramatically higher than that of conventional SPECT. However, CZT cameras differ in that spatial resolution and contrast-to-noise ratio are better with conventional SPECT, whereas count sensitivity is markedly higher with the DSPECT.

최근 Cadmium-zinc-telluride (CZT) 반도체를 이용한 심장전용 감마카메라가 심장 핵의학 검사에 사용되고 있다. 본 연구는 기존 NaI(Tl) 신틸레이터를 사용한 감마카메라와 성능을 비교해 보고자 한다. CZT반도체를 사용한 심장전용 감마카메라(DSPECT, Spectrum-dynamic)와 범용 신틸레이터 SPECT 감마카메라(Infinia, GE)를 사용하여 연구를 진행했다. 방사성 동위원소는 $^{99m}TcO^{-4}$를 사용하고, 일반 임상 심장핵의학 검사에 사용된 조건을 실험 조건으로 설정 했다. NEMA 2001, 3 line phantom을 사용하여 반치폭(full width at half maximum, FWHM)을 측정하여 공간분해능(Spatial resolution)을 비교했다. 심장 팬텀을 사용하여 대조도대잡음비(Contrast to noise, CNR)를 비교하여 영상을 평가했다. 그리고 팬텀의 시간 당 MBq당 계수를 측정하여 민감도도 평가했다. NaI (Tl) 신틸레이터를 사용한 범용SPECT 감마카메라와 CZT 반도체를 사용한 심장 전용 감마카메라의 영상평가에서 감도는 $52.83counts{\cdot}sec^{-1}{\cdot}MBq^{-1}$$195.83counts{\cdot}sec^{-1}{\cdot}MBq^{-1}$로 나왔고, 공간분해능은 16.90 mm과 9.47 mm로 나왔다. 그리고 대조도대 잡음비는 3.6 과 4.2 로 나왔다. 기존 카메라를 이용한 심장 핵의학 영상과 비교하여 CZT를 사용한 심장 전용 감마카메라는 감도 및 공간분해능, 대조도대잡음비가 기존 감마카메라와 비교하여 월등하여 임상에서 환자의 피폭선량 저감과 검사 시간 단축, 높은 분해능의 영상으로 환자 만족도에 큰 영향을 줄 것으로 사료 된다.

Keywords

References

  1. Schillaci O, Danieli R. Dedicated cardiac cameras: a new option for nuclear myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2010;37:1706-1709.
  2. Mouden M, Timmer JR, Ottervanger JP, et al. Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: fewer equivocal results and lower radiation dose. Eur J Nucl Med Mol Imaging. 2012;39:1048-1055. https://doi.org/10.1007/s00259-012-2086-z
  3. Duvall WL, Croft LB, Ginsberg ES, et al. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol. 2011;18:847-857. https://doi.org/10.1007/s12350-011-9379-7
  4. Songy B, Guernou M, Lussato D, et al. Low-dose thallium-201 protocol with a cadmium-zinc-telluride cardiac camera. Nucl Med Commun. 2012;33:464-469. https://doi.org/10.1097/MNM.0b013e3283504543
  5. Rajaram R, Bhattacharya M, Ding X, et al. Tomographic performance characteristics of the IQSPECT system. IEEE Nucl Sci Symp Conf Rec. 2011; 2451-2456.
  6. Erlandsson K, Kacperski K, Van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology. Phys Med Biol. 2009; 54:2635-2649. https://doi.org/10.1088/0031-9155/54/9/003
  7. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging. 2010;37: 1887-1902. https://doi.org/10.1007/s00259-010-1488-z
  8. Buechel RR, Pazhenkottil AP, Herzog BA, et al. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinctelluride detector gamma camera. Eur J Nucl Med Mol Imaging. 2010;37: 1903-1908. https://doi.org/10.1007/s00259-010-1480-7
  9. Pazhenkottil AP, Buechel RR, Herzog BA, et al. Ultrafast assessment of left ventricular dyssynchrony from nuclear myocardial perfusion imaging on a new high-speed gamma camera. Eur J Nucl Med Mol Imaging. 2010;37:2086-2092. https://doi.org/10.1007/s00259-010-1507-0
  10. Buechel RR, Herzog BA, Husmann L, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation. Eur J Nucl Med Mol Imaging. 2010;37:773-778. https://doi.org/10.1007/s00259-009-1375-7
  11. Esteves FP, Raggi P, Folks RD, et al. Novel solid-state detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16:927-934. https://doi.org/10.1007/s12350-009-9137-2
  12. Songy B, Lussato D, Guernou M, et al. Comparison of myocardial perfusion imaging using thallium-201 between a new cadmium-zinc-telluride cardiac camera and a conventional SPECT camera. Clin Nucl Med. 2011;36:776-780. https://doi.org/10.1097/RLU.0b013e31821a294e
  13. Vija AH, Zeintl J, Chapman JT, Hawman EG, Hornegger J. Development of rapid SPECT acquisition protocol for myocardial perfusion imaging. IEEE Nucl Sci Symp Conf Rec. 2006;3:1811-1816.
  14. Vija H, Hawman EG, Engdahl JC. Analysis of a SPECT OSEM reconstruction method with 3D beam modeling and optional attenuation correction: phantom studies. IEEE Nucl Sci Symp Conf Rec. 2003;4:2662-2666.
  15. Romer W, Reichel N, Vija HA, et al. Isotropic reconstruction of SPECT data using OSEM3D: correlation with CT. Acad Radiol. 2006;13:496-502.
  16. Shea SM, Kroeker RM, Deshpande V, et al. Coronary artery imaging: 3D segmented k-space data acquisition with multiple breath-holds and real-time slab following. J Magn Reson Imaging. 2001;13:301-307. https://doi.org/10.1002/1522-2586(200102)13:2<301::AID-JMRI1043>3.0.CO;2-8
  17. Larson AC, Kellman P, Arai A, et al. Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med. 2005;53: 159-168. https://doi.org/10.1002/mrm.20331
  18. Leung AO, Paterson I, Thompson RB. Free-breathing cine MRI. Magn Reson Med. 2008;60:709-717.
  19. Poussier S, Maskali F, Tran N, et al. ECG-triggered 18F-fluorodeoxyglucose positron emission tomography imaging of the rat heart is dramatically enhanced by acipimox. Eur J Nucl Med Mol Imaging. 2010;37:1745-1750. https://doi.org/10.1007/s00259-010-1418-0
  20. Marie PY, Djaballah W, Franken PR, et al. OSEM reconstruction, associated with temporal Fourier and depth-dependant resolution recovery filtering, enhances results from sestamibi and 201Tl 16-interval gated SPECT. J Nucl Med.2005;46:1789-1795.
  21. Caru B, Colombo E, Santoro F, Laporta A, Maslowsky F. Regional flow responses to exercise. Chest. 1992;101 (suppl):223S-225S. https://doi.org/10.1378/chest.101.5_Supplement.223S
  22. Ayalew A, Marie PY, Menu P, et al. A comparison of the overall first-pass kinetics of thallium-201 and technetium-99m MIBI in normoxic and low-flow ischaemic myocardium. Eur J Nucl Med. 2000;27:1632-1640.
  23. Ayalew A, Marie PY, Menu P, et al. 201Tl and 99mTc-MIBI retention in an isolated heart model of low-fl ow ischemia and stunning: evidence of negligible impact of myocyte metabolism on tracer kinetics. J Nucl Med. 2002;43:566-574.
  24. Groves EM, Bireley W, Dill K, Carroll TJ, Carr JC. Quantitative analysis of ECG-gated high-resolution contrast-enhanced MR angiography of the thoracic aorta. AJR. 2007;188:522-528. https://doi.org/10.2214/AJR.05.1467
  25. Nkoulou R, Pazhenkottil AP, Kuest SM, et al. Semiconductor detectors allow low-dose-low-dose 1-day SPECT myocardial perfusion imaging. J Nucl Med. 2011;52:1204-1209. https://doi.org/10.2967/jnumed.110.085415