• 제목/요약/키워드: Carboxymethyl Cellulose

Search Result 221, Processing Time 0.027 seconds

Preparation of Coating Film with Antibacterial and Antifogging Function on PET Substrate (PET 기재 위에 항균성과 김서림 방지 기능을 갖는 코팅 도막 제조)

  • Ho Chan Kwon;Ki Chang Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.439-445
    • /
    • 2023
  • In this study, silver nanoparticles were synthesized by reducing silver nitrate with PVA, and the solution prepared by adding carboxymethyl cellulose (CMC) to the silver nanoparticles was coated on a PET substrate to prepare a coating film with antibacterial and antifogging function. When the coating films were in contact with water vapor at 80 ℃, the uncoated PET substrate was blurred due to the scattering of light due to the occurrence of fog, while the coating film coated with silver nanosol with CMC remained transparent despite contact with water vapor, showing excellent antifogging function. In addition, the antibacterial properties of the coating films were measured by film adhesion method for Staphylococcus aureus, gram-positive bacteria, and Escherichia coli, gram-negative bacteria. The uncoated PET substrate showed a large number of colonies of Staphylococcus aureus and Escherichia coli, while the coating film coated with the silver nanosol greatly inhibited the growth of Staphylococcus aureus and Escherichia coli, resulting in excellent antibacterial effect.

Influence of Artificial Tear Containing Carboxymethyl Cellulose Component on Physical Properties of Hydrogel Contact lens (카르복시메칠 셀룰로오스 성분이 포함된 인공누액이 하이드로젤 콘택트렌즈의 물성에 미치는 영향)

  • Cho, Seon-Ahr;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.457-463
    • /
    • 2013
  • To determine the impact of artificial tears which include carboxymethyl cellulose on a hydrogel contact lenses. Methods: A contact lenses made of the cross-linking agent, EGDMA (ethylene glycol dimethacrylate) and HEMA (2-hydroxyethyl methacrylate) and with added NVP (n-vinyl-2-pyrrolidone) and MMA (methyl methacrylate) was evaluated for water content, refractive index, spectral transmittance and contact angle of produced contact lens. Results: The physical properties of the sampled copolymerized polymers showed that water content, refractive index, visible ray transmittance and contact angle were in the range of 26.61%~48.58%, 1.422~1.455, 80.8%~91.4% and $33.93^{\circ}{\sim}65.70^{\circ}$, respectively. In addition, after soaking with artificial tears, the water content, refractive index and contact angle were in the range of 24.46%~48.25%, 1.422~1.457, 77.0%~91.0% and $37.25^{\circ}{\sim}77.33^{\circ}$, respectively. The changes of the physical property depending on hydration time and showed an increase of refractive index and contact angle, decrease of water content and visible ray transmittance. Conclusions: Artificial tears which include carboxymethyl cellulose sodium which is used as a wetting agent influenced water content, refractive index, contact angle and spectral transmittance of a hydrogel contact lenses.

Effects of Glucomannan, Carrageenan, Carboxymethyl cellulose, and Transglutaminase-B on the Quality Properties of Pork Patties Containing Pork Skin Connective Tissue (Glucomannan, Carrageenan, Carboxymethyl cellulose 및 Transglutaminase-B 첨가가 돈육껍질결체조직 함유 돈육 패티의 품질 특성에 미치는 영향)

  • Jin, Sang-Keun;Yang, Han-Sul
    • Journal of Animal Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.307-313
    • /
    • 2012
  • This study was conducted to investigate the effects of glucomannan (GMN), carrageenan (CAR), carboxymethyl cellulose (CMC), and transglutaminase-B (TGB) on the quality and storage properties of pork patties manufactured with pork skin connective tissue during 21 d of storage at $4^{\circ}C$. Results showed that CIE color values like lightness, redness and yellowness did not differ significantly among the pork patties. Sensory attributes also did not differ between the treatments (P>0.05). However, cooking loss was significantly lower in the group with added GMN, CAR, CMC, and TGB compared to the control at 21 d of storage. The shear force value of GMN and TGB were lower than the control at 21 d of storage (P<0.05). The pork patties added with GMN and TGB had lower thiobarbituric acid reactive substances (TBARS) values than the control at 1 or 21 d of storage (P<0.05). Volatile basic nitrogen (VBN) values of all treatment samples was lower than the control at 21 d of storage (P<0.05). Therefore, result of cooking loss suggested that the decrease in shear force in GMN and TGB were due to higher moisture retention. Also, the pork skin connective tissue with added GMN and TGB decreased lipid oxidation of pork patties.

Production of Alkaline Carboxymethyl Cellulase and Xylanase by Batch and Fed-batch Cultures of Alkalophilic Cephalosporium sp. RYM-202 (호알카리성 Cephalosporium sp. RYM-202의 회분 및 유가배양에 의한 Alkaline Carboxymethyl Cellulase와 Xylanase의 생산)

  • Kang, Myoung-Kyu;Kim, Do-Young;Rhee, Young-Ha
    • The Korean Journal of Mycology
    • /
    • v.25 no.2 s.81
    • /
    • pp.91-100
    • /
    • 1997
  • Production of alkaline carboxymethyl cellulase (CMCase) and xylanase by batch and fed-batch cultures of alkalophilic Cephalosporium sp. RYM-202 was investigated. Of carbon sources tested, wheat bran gave the highest production of those enzymes. The high levels of CMCase on carboxymethyl cellulose and xylanase on birchwood xylan suggest that the biosynthesis of CMCase and xylanase in Cephalosporium sp. RYM-202 is regulated separately at the level of enzyme induction. The temperature and pH for maximal production of those enzymes was $20^{\circ}C$ and 9.0, respectively. High concentration of wheat bran in batch fermentation resulted in the lower and delayed production of the enzymes by catabolite repression. In fed-batch fermentation with controlled feeding of 5% final wheat bran concentration, the highest activities of CMCase and xylanase were 0.39 and 9.2 units/ml, respectively, and 1.22 and 1.36 times higher respectively than those in batch fermentation on 5% wheat bran.

  • PDF

Isolation and Identification of Pseudomonas sp. CMC-50 Producing Carboxymethyl Cellulase and Characterization of Its Crude Enzyme

  • Kim, Hyun-Joong;Kim, Hae-Yeong
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.74-78
    • /
    • 2000
  • A strain that produces a high level of carboxymethyl cellulase was isolated from rotten leaves. The isolated strain was revealed to be gram-negative, oxidase-positive, and catalase-negative. From the electron microscopic features, it was identified as a rod-shaped bacterium with peritrichous flagella and did not form spores. Morphological and biochemical characteristics of the strain were found to be similar to the Pseudomonas species. However, carbon utilization test showed different results. Based on the results, this new strain was identified as Pseudomonas sp. CMC-50. CMCase produced by this strain showed a strong activity in neutral and weak acidic conditions and maximum activity at $50^{\circ}C$.

  • PDF

Evaluation, Characterization and Molecular Analysis of Cellulolytic Bacteria from Soil in Peshawar, Pakistan

  • Ikram, Hira;Khan, Hamid Ali;Ali, Hina;Liu, Yanhui;Kiran, Jawairia;Ullah, Amin;Ahmad, Yaseen;Sardar, Sadia;Gul, Alia
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.245-254
    • /
    • 2022
  • Cellulases are a group of biocatalyst enzymes that are capable of degrading cellulosic biomass present in the natural environment and produced by a large number of microorganisms, including bacteria and fungi, etc. In the current study, we isolated, screened and characterized cellulase-producing bacteria from soil. Three cellulose-degrading species were isolated based on clear zone using Congo red stain on carboxymethyl cellulose (CMC) agar plates. These bacterial isolates, named as HB2, HS5 and HS9, were subsequently characterized by morphological and biochemical tests as well as 16S rRNA gene sequencing. Based on 16S rRNA analysis, the bacterial isolates were identified as Bacillus cerus, Bacillus subtilis and Bacillus stratosphericus. Moreover, for maximum cellulase production, different growth parameters were optimized. Maximum optical density for growth was also noted at pH 7.0 for 48 h for all three isolates. Optical density was high for all three isolates using meat extract as a nitrogen source for 48 h. The pH profile of all three strains was quite similar but the maximum enzyme activity was observed at pH 7.0. Maximum cellulase production by all three bacterial isolates was noted when using lactose as a carbon rather than nitrogen and peptone. Further studies are needed for identification of new isolates in this region having maximum cellulolytic activity. Our findings indicate that this enzyme has various potential industrial applications.

Preparation of Trinitrophenyl Cellulose as Substrate for Cellulase Assay (Trinitrophenyl Cellulose의 조제)

  • Maeng, Jeong-Seob;Nam, Yoon-Kyu;Park, Seung-Heui;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.2
    • /
    • pp.151-155
    • /
    • 1995
  • Two types of modified celluloses which contain trinitrophenyl groups as chromophore were synthesized from carboxymethyl cellulose Whatman CM 70 and CM 32. Diaminoethyl groups were added to the CM 70 and CM 32 to make DAE-CM celluloses and then the DAE-CM groups were substituted by 2,4,6-trinitrophenyl groups to produce TNP-celluloses. Average particle size of the TNP-cellulose from CM 32 was $44.6{\pm}9.6{\mu}m$ in diameter and $127.9{\pm}22.5{\mu}m$ in length, which was much smaller than those from CM 70, however its TNP-moiety per gram determined by using the molar extinction coefficient $1.33{\times}10^4$ of ${\varepsilon}$-TNP-lysine at 345 nm, was 0.68 millimoles, which was 5.6-fold greater than those from CM 70. The absorption spectrum of TNP-oligosaccharides which were the soluble products of TNP-celluloses by a cellulase preparation Onozuka R-10, showed a maximal peak at 344 nm. Increases in the absorbance during hydrolysis were linear with the enzyme concentration, and the differences of slope values between two types of TNP-celluloses that the more semsitive assay could be achieved by using those from CM 32 as substrate at the low range of the enzyme concentration.

  • PDF

고정상세포분리기의 개발 및 Cyclosporin A 생산을 위한 고정화 연속배양공정에의 적용

  • Lee, Tae-Ho;Park, Sung-Kwan;Chang, Yong-Keun;Chun, Gie-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.717-725
    • /
    • 1996
  • We have developed an efficient immobilized cell separator for continuous operation of immobilized fungal cell cultures, and applied this separator to actual fermentation process for the production of cyclosporin A (CyA), a powerful immunosuppressant. In the experiments employing highly viscous polymer (carboxymethyl cellulose) solution, the decantor showed good separating performances at high solution viscosites and fast dilution rates. Air duct and cylindrical separator installed inside the decantor turned out to play key roles for the efficient separation of the immobilized cells. By installing the decantor in an immobilized perfusion reactor system (IPRS), continuous immobilized culture was stably carried out even at high dilution rate for a long period, leading to high productivities of free cells and CyA. Almost no immobilized biomass existed in effuluent stream of the IPRS, demonstrating the effectiveness of the decan- tor system for a long-term continuous fermentation. It was noteworthy that we could obtain these results despite of the unfavorable fermentation conditions, i.e., reduced density of the biosupports caused by overgrowth of cells inside the bead particles and existence of high density of suspended fungal cells (10g/l) in the fermentation broth.

  • PDF

Dentinal Tubules Occluding Effect Using Nonthermal Atmospheric Plasma

  • Lee, Chang Han;Kim, Young Min;Kim, Gyoo Cheon;Kim, Shin
    • International Journal of Oral Biology
    • /
    • v.43 no.2
    • /
    • pp.83-91
    • /
    • 2018
  • Nonthermal atmospheric plasma has been studied for its many biomedical effects, such as tooth bleaching, wound healing, and coagulation. In this study, the effects of dentinal tubules occlusion were investigated using fluoride-carboxymethyl cellulose (F-CMC) gel, nano-sized hydroxyapatite (n-HA), and nonthermal atmospheric plasma. Human dentin specimens were divided to 5 groups (group C, HA, HAF, HAP, and HAFP). Group HA was treated with n-HA, group HAF was treated with n-HA after a F-CMC gel application, group HAP was treated with n-HA after a plasma treatment and group HAFP was treated with n-HA after a plasma and F-CMC gel treatment. The occlusion of dentinal tubules was investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS), which shows Ca/P ratio. In the EDS results, a higher Ca/P ratio was shown in the groups including n-HA than in the control group. The specimens of group HAP and HAFP had a higher Ca/P ratio in retentivity. In the SEM results, there was not a significant difference in the amount of times applied. Therefore, this study suggests F-CMC gel and n-HA treatment using nonthermal atmospheric plasma will be a new treatment method for decreasing hypersensitivity.

Synthesis of biodegradable films obtained from rice husk and sugarcane bagasse to be used as food packaging material

  • Gupta, Himanshu;Kumar, Harish;Kumar, Mohit;Gehlaut, Avneesh Kumar;Gaur, Ankur;Sachan, Sadhana;Park, Jin-Won
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.506-514
    • /
    • 2020
  • The current study stresses on the reuse of waste lignocellulose biomass (rice husk and sugarcane bagasse) for the synthesis of carboxymethyl cellulose (CMC) and further conversion of this CMC into a biodegradable film. Addition of commercial starch was done to form biodegradable film due to its capacity to form a continuous matrix. Plasticizers such as Glycerol and citric acid were used to provide flexibility and strength to the film. Biopolymer film obtained from sugarcane bagasse CMC showed maximum tensile strength and elongation in comparison to the film synthesized from commercial CMC and CMC obtained from rice husk. It has been observed that an increase in sodium glycolate/NaCl content in CMC imposed an adverse effect on tensile strength. Opacity, moisture content, and solubility of the film increased with a rise in the degree of substitution of CMC. Therefore, CMC obtained from sugarcane bagasse was better candidate in preparing biopolymer/biocomposite film.