• Title/Summary/Keyword: Carboxylic acid chloride

Search Result 44, Processing Time 0.023 seconds

Convenient Synthesies of Carboxylic Esters and Thiol Esters Using Acid Chlorides and Zinc Chloride

  • Kim, Sung-Gak;Lee, Won-Jae;Lee, Jae-ln
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.5
    • /
    • pp.187-190
    • /
    • 1984
  • Reaction of acid chlorides with primary alcohols, secondary alcohols, and aryl alcohols in the presence of a catalytic amount of zinc chloride gave the corresponding esters in high yields, whereas the reaction with tertiary alcohols failed to give the esters due to the fast solvolytic reactions of tertiary alcohols with hydrogen chloride generated from the reaction. The use of molecular sieves as a scavenger for hydrogen chloride was found to be moderately effective in the reaction of mesitoyl chloride with tertiary alcohols. Reaction of acid chlorides with thiols in the presence of zinc chloride in acetonitrile proceeded cleanly, yielding the corresponding thiol esters in high yields.

Electrochemical Oxidation of Glucose at Nanoporous Gold Surfaces Prepared by Anodization in Carboxylic Acid Solutions (카복실산 용액에서 양극산화에 의해 형성된 나노다공성 금 표면상의 전기화학적 글루코오스 산화)

  • Roh, Seongjin;Jeong, Hwakyeung;Lee, Geumseop;Kim, Minju;Kim, Jongwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.74-80
    • /
    • 2013
  • We investigate the formation of nanoporous gold (NPG) surfaces by anodization in three carboxylic acid (formic acid, acetic acid, and propionic acid) solutions and the electrochemical oxidation of glucose at NPG surfaces. Among three carboxylic acids, formic acid provided the most efficient conditions for NPG formation towards glucose oxidation. The optimized conditions during anodization in formic acid for glucose oxidation were 5.0 V of applied potential and 4 hour of reaction time. Electrocatalytic activities for glucose oxidation at NPG surfaces prepared by anodization in carboxylic acids were examined under the absence and presence of chloride ions, which were compared to those observed at NPG prepared in oxalic acid solutions. The application NPG prepared by optimized anodization conditions in formic acid to the amperometric detection of glucose was demonstrated.

Synthesis of Indoline tri-isopropyl benzene sulfonamide as a potential new asymmetric catalyst (새로운 술폰아미드계의 촉매의 합성)

  • Yun, In-Gwon;Kim, Hwan-Cheol
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.47-51
    • /
    • 1995
  • In order to develope new asymmetric catalyst, we synthesized the following new sulfonamide derivatives start from S-Indoline-2-Carboxylic Acid via the following 5 steps. Hydroxy methyl derivative(1) was thus treated with methane sulfonyl chloride in the presence of triethylamine as base to give mesylated derivative(2) in 85% of isolated yield. The mesylate compound (2) was treated with excess sodium azide to give Azido derivative (4) in 95% isolated yield. Azido compound (3) was then reduced to the corresponding amino derivative in near quntitative yield by the hydrogenation under hydrogen atmospere in the presence of catalytic amount of Pd-C. The amino derivative (4) was converted to its sulfonamide derivatives by the treatment of compound(4) with triisopropyl benzene sulfonyl chloride in the presence of triethyl amine as base. Finally t-BOC group of the compound(5) was removed by the treatement of excess Trifluoro-acetic acid in near quantitative yield to give the target sulfonamide derivative (7) .in this paper we prepared compound(6) in 49% overall yield via the 5 steps of synthesis starting from t-Boc- 2-hydroxy methyl indoline(1) which cab be easily prepared from commercial available S-indoline-2-carboxylic acid by known methods. we plan to apply this new catalyst for the asymmetric reduction , diels-alder reaction, aldolcondensation reaction in due courses.

  • PDF

Raction of Thexylbromoborane-Methyl Sulfide in Methylene Chloride with Selected Organic Compounds Containing Representative Functional Groups$^\dag$

  • Cha, Jin-Soon;Kim, Jin-Euog;Oh, Se-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.313-318
    • /
    • 1987
  • The approximate rate and stoichiometry of the reaction of excess Thexylbromoborane-methyl sulfide, $ThxBHBr{\cdot}SMe_2,$ with selected organic compounds containing representative functional groups under standardized conditions (methylene chloride, $0^{\circ}C)$ were studied in order to characterize the reducing characteristics of the reagent for selective reductions. The selectivity of the reagent was also compared to the selectivity of thexylchloroborane-methyl sulfide. Thexylbromoborane appears to be a much milder and hence more selective reducing agent than thexylchloroborane. The reagent tolerates many organic functionalities. Thus, the reagent shows very little reactivity or no reactivity toward acid chlorides, esters, epoxides, amides, nitro compounds including simple olefins. However, this reagent can reduce aldehydes, ketones, carboxylic acids, nitriles, and sulfoxides. Especially the reagent reduces carboxylic acids including ${\alpha},{\beta}$ -unsaturated ones and nitriles to the corresponding aldehydes. In addition to that, thexylbromoborane shows good stereoselectivity toward cyclic ketones, much better than the chloro-derivative.

Synthesis and Antifungal Activity of 1,3-substituted-5-chloropyrazole-4-carboxylic acid Oxime Esters (1,3-치환-5-chloropyrazole-4-carboxylic acid oxime ester의 합성과 살균력)

  • Kim, Yong-Whan;Park, Chi-Hyun;Choi, Weon-Seok;Kwon, Young-Chil;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.401-407
    • /
    • 1989
  • A series of novel 1,3-substituted-5-chloropyrazole-4-carboxylic acid oxime esters was synthesized. Their chemical strictures were elucidated on $^1H,\;^{13}C-NMR$ and IR spectra, Fifteen such compounds were screened for their antifungal activity against R. solani, P. oryzae, B. cinerea, P. graminearum, P. capsici and G. cingulata. The results showed that pyrazole-oxime esters with electron withdrawing groups(III, XIII, XIV) had better biological activities than these with electron releasing groups.

  • PDF

Studies on Electroless Nickel Plating on Alumina Ceramics(I) on Empirical Deposition Rate in Electroless Nickel Plating (알루미나 세라믹스 표면에 무전해 환원 니켈막의 형성에 관한 연구(I) 무전해 니켈도금의 실험적 석출속도에 관한 연구)

  • Kim, Yong-Dai;Lee, Joon
    • Journal of Surface Science and Engineering
    • /
    • v.19 no.3
    • /
    • pp.109-120
    • /
    • 1986
  • The electroless nickel plating on high alumina ceramics was performed in the bath containing nickel chloride, sodium hypophosphite and mono- or bi-carboxylic acid as a complexing agent in order to examine the empirical rate law as well as the effects of the complexing agent, plating temperature and pH on the rate of deposition. Adding the carboxylic acid to the plating bath, the rate of deposition was increased considerably, and each of the complexing agents showed a maximum deposition rate plateau around a particular concentration of the complexing agent. The rate of deposition was increased with increasing either temperature or pH, but microstructure of the surface became more rough. Furthermore, empirical rate law of the elecltroless nickel deposition on high alumina ceramics was discussed with the activation energy and other rate parameters calculated.

  • PDF

Studies on the Synthesis of Etodolac Derivatives as Potential Anti-inflammatory Agents (항염증제인 Etodolac 유도체의 합성에 관한 연구)

  • Cho, Hoon;Chung, Yong Seog;Jang, Hang Dong;Ryu, Seong Ryual
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.135-137
    • /
    • 1999
  • For the synthesis of new anti-inflammatory agents as indol derivatives, we have synthesized ${\alpha}$-benzoyl-1-ethyl-1,3,4,9-tetrahydro-8-ethyl-9-(N-benzoyl)pyrano[3,4-b]indole-1-acetic acid methyl ester. It was a new method for ${\alpha}$-substituted etodolac carboxylic acid. The synthetic process was composed of four steps, and 7-ethylindole and oxalyl chloride were used as starting materials. The third step, cyclization was carried out by addition of borontrifluoride diethyl etherate in 66% yield. The step of reduction and cyclization were simplified successfully. The final product, ${\alpha}$-benzoyl-1-ethyl-1,3,4,9-tetrahydro-8-ethyl-9-(N-benzoyl)pyrano[3,4-b]indole-1-acetic acid methyl ester was obtained in 66% yield by the reaction of methyl 1,8-dimethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-acetate (etodollic acid methyl ester) and benzoyl chloride.

  • PDF

Constituents of Antimutagenic Factor from Brown Rice (현미의 항돌연변이 활성물질의 구성성분)

  • Chun, Hyang-Sook;Moon, Tae-Wha;Kim, In-Ho
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.478-483
    • /
    • 1995
  • To investigate the constituents of antimutagenic factor from brown rice, methanol extracts were fractionated into ether, ethylacetate, buthanol and aqueous fractions. The ether fractions showed distinct antimutagenic effect and active spot were selected by silica gel chromatography. The specific activity of active spot decreased with isolation of the active components from the methanol extract. Qualitative analyses of the active spot by using various spraying reagents revealed that ninhydrin and orcinol did not develop colored reactions. But, ferric chloride, 2,7-dichlorofluorescein, antimony pentachloride, phosphomolybdic acid, bromothymol blue and rhodamine 6G led to colored reactions. These results suggested that the consitituents of active material were neither polar nor nitrogen-containing compounds and that they may contain phenolic compounds and fatty acid derivatives. Main compounds of the active spot were analyzed to be o-hydroxy benzyl alcohol(saligenin), octanoic acid(caprylic acid), 9,12-cis-octadecadienoic acid(linoleic acid), 11-cis-octadecenoic acid(oleic acid), hexadecanoic acid(palmitic acid), 1H-indole-2-carboxylic acid and 1,2-benzenedicarboxylic acid(phthalate) in GC/Mass spectrum, and antimutagenicity of these active compounds using standard regeant was reconfirmed in S. typhimurium reversion assay.

  • PDF