DOI QR코드

DOI QR Code

Electrochemical Oxidation of Glucose at Nanoporous Gold Surfaces Prepared by Anodization in Carboxylic Acid Solutions

카복실산 용액에서 양극산화에 의해 형성된 나노다공성 금 표면상의 전기화학적 글루코오스 산화

  • Roh, Seongjin (Department of Chemistry, Chungbuk National University) ;
  • Jeong, Hwakyeung (Department of Chemistry, Chungbuk National University) ;
  • Lee, Geumseop (Department of Chemistry, Chungbuk National University) ;
  • Kim, Minju (Department of Chemistry, Chungbuk National University) ;
  • Kim, Jongwon (Department of Chemistry, Chungbuk National University)
  • Received : 2013.03.11
  • Accepted : 2013.03.28
  • Published : 2013.05.31

Abstract

We investigate the formation of nanoporous gold (NPG) surfaces by anodization in three carboxylic acid (formic acid, acetic acid, and propionic acid) solutions and the electrochemical oxidation of glucose at NPG surfaces. Among three carboxylic acids, formic acid provided the most efficient conditions for NPG formation towards glucose oxidation. The optimized conditions during anodization in formic acid for glucose oxidation were 5.0 V of applied potential and 4 hour of reaction time. Electrocatalytic activities for glucose oxidation at NPG surfaces prepared by anodization in carboxylic acids were examined under the absence and presence of chloride ions, which were compared to those observed at NPG prepared in oxalic acid solutions. The application NPG prepared by optimized anodization conditions in formic acid to the amperometric detection of glucose was demonstrated.

세 가지 종류의 카복실산(포름산, 아세트산, 프로피온산) 용액 하에서 양극산화 반응을 통한 나노 다공성 금(nanoporous gold, NPG) 구조의 형성과 NPG 전극 표면 상의 전기화학적 글루코오스 산화반응을 관찰하였다. 세 가지 카복실산 용액 조건 중에서 포름산 용액 조건하의 양극산화를 통해 형성된 NPG 전극에서 글루코오스의 산화 활성이 가장 우수하였다. 포름산 용액 조건하의 양극산화 과정에서 가장 우수한 글루코오스 산화 활성을 얻기 위한 최적 조건은 인가전위 5.0 V와 반응시간 4시간이었다. 카복실산 용액 하에서 형성된 NPG 상의 전기화학적 글루코오스 산화 활성을 염소이온의 부재 및 존재 하 조건에서 관찰하고, 이를 옥살산 용액 하에서 형성된 NPG 상의 거동과 비교 분석하였다. 포름산 용액 하에서 최적 조건으로 형성된 NPG 전극상에서 글루코오스의 전류법 검출 응용을 제시하였다.

Keywords

References

  1. S. Park, H. C. Kim, and T. D. Chung, 'Electrochemical analysis based on nanoporous structures' Analyst, 137, 3891 (2012). https://doi.org/10.1039/c2an35294j
  2. J. H. Bae, J.-H. Han, and T. D. Chung, 'Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis' Phys. Chem. Chem. Phys., 14, 448 (2012). https://doi.org/10.1039/c1cp22927c
  3. Y. Ding and J. Erlebacher, 'Nanoporous metals with controlled multimodal pore size distribution' J. Am. Chem. Soc., 125, 7772 (2003). https://doi.org/10.1021/ja035318g
  4. A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, and M. Baumer, 'Nanoporous Gold Catalysts for Selective Gas- Phase Oxidative Coupling of Methanol at Low Temperature' Science, 327, 319 (2010). https://doi.org/10.1126/science.1183591
  5. R. Zeis, T. Lei, K. Sieradzki, J. Snyder, and J. Erlebacher, 'Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold' J. Catal., 253, 132 (2008). https://doi.org/10.1016/j.jcat.2007.10.017
  6. Z. Liu, J. Du, C. Qiu, L. Huang, H. Ma, D. Shen, and Y. Ding, 'Electrochemical sensor for detection of pnitrophenol based on nanoporous gold' Electrochem. Commun., 11, 1365 (2009). https://doi.org/10.1016/j.elecom.2009.05.004
  7. Y. Xia, W. Huang, J. F. Zheng, Z. J. Niu, and Z. L. Li, 'Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method' Biosens. Bioelectron., 26, 3555 (2011). https://doi.org/10.1016/j.bios.2011.01.044
  8. Y. P. Deng, W. Huang, X. Chen, and Z. L. Li, 'Facile fabrication of nanoporous gold film electrodes' Electrochem. Commun., 10, 810 (2008). https://doi.org/10.1016/j.elecom.2008.03.003
  9. K. Nishio and H. Masuda, 'Anodization of Gold in Oxalate Solution To Form a Nanoporous Black Film' Angew. Chem. Int. Ed., 50, 1603 (2011). https://doi.org/10.1002/anie.201005700
  10. H. Jeong and J. Kim, 'Electrochemical oxidation of glucose at nanoporous black gold surfaces in the presence of high concentration of chloride ions and application to amperometric detection' Electrochim. Acta, 80, 383 (2012). https://doi.org/10.1016/j.electacta.2012.07.040
  11. S. Trasatti and O. A. Petrii, 'Real surface-area measurements in electrochemistry' Pure Appl. Chem., 63, 711 (1991). https://doi.org/10.1351/pac199163050711
  12. S. Cho, H. Shin, and C. Kang, 'Catalytic glucose oxidation on a polycrystalline gold electrode with an amalgamation treatment (TM 05092)' Electrochim. Acta, 51, 3781 (2006). https://doi.org/10.1016/j.electacta.2005.10.042
  13. B. Seo and J. Kim, 'Electrooxidation of Glucose at Nanoporous Gold Surfaces: Structure Dependent Electrocatalysis and Its Application to Amperometric Detection' Electroanalysis, 22, 939 (2010). https://doi.org/10.1002/elan.200900514
  14. S. Park, T. D. Chung, and H. C. Kim, 'Nonenzymatic glucose detection using mesoporous platinum' Anal. Chem., 75, 3046 (2003). https://doi.org/10.1021/ac0263465