• 제목/요약/키워드: Carboxylic Acid

검색결과 706건 처리시간 0.026초

Synthesis of Chiral Poly(norbornene carboxylic acid ester)s and Their Characteristic Properties in The Thin Film

  • Byun, Gwang-Su;Lee, Taek-Joon;Jin, Kyeong-Sik;Ree, Moon-Hor;Kim, Sang-Youl;Cho, I-Whan
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.333-333
    • /
    • 2006
  • We synthesized two novel polynorbornene derivatives, chiral poly(norbornene acid methyl ester) (C-PNME) and racemic poly(norbornene acid n-butyl ester) (R-PNME), which are potential low dielectric constant materials for applications in advanced microelectronic and display devices. Thin films of these polymers deposited on substrates were investigated by structural analyses using synchrotron grazing incidence X-ray scattering, specular reflectivity and ellipsometry. These analyses provided important information on the structure, electron density gradient across film thickness, chain orientation, refractive index and thermal expansion of the polymers in substrate-supported thin films. The structural characteristics and properties of the thin films were first dependent on the polymer chain' tacticity and further influenced by film thickness and thermal annealing.

  • PDF

[Ni($L^2$)($H_2O$)]Cl$\cdot$$H_2O$ ($L^2$: 3,14-dimethyl-2,6,13,17-tetraazatricyclo [14,4,$0^{1.18}$,$0^{7.12}$docosane-N-acetic acid) 착물의 합성 및 결정구조 (Preparationan dCrystal Structure of [Ni($L^2$)($H_2O$)]Cl$\cdot$$H_2O$ ($L^2$: 3,14-dimethyl-2,6,13,17-tetraazatricyclo [14,4,$0^{1.18}$,$0^{7.12}$]docosane-N-acetic acid))

  • Park, Ki-Yonng;Park, Young-Soo;Kim, Jin-Gyu;Suh, Il-Hwan;Kim, Chang-Suk
    • 한국결정학회지
    • /
    • 제10권1호
    • /
    • pp.33-38
    • /
    • 1999
  • The complex [Ni(L2)(H2O)]Cl·H2O (1) (L2=3,14-dimethyl-2,6,13,17-tetraazartricyclo [14,4,01.18,07.12]docosane-N-acetic acid) has been synthesized and characterized by X-ray crystallography. 1 crystallizes in the triclinic system, space group P, with a=11.274(1), b=13.851(1), c=17.159(6) , α=90.24(2), β=101.10(2), γ=92.11(1)o V=2682.5(11) 3, Z=4, R1=0.042 and wR2=0.111 for 9432 observed reflections with [I>2σ(I)]. The central nicke(II) ion is six-coordinated octahedral geometry with bonds to the four amine nitrogen atoms the carboxylic oxygen atom of the macrocyclic ligand and to the water molecule occupying a position trans to the pendant arm.

  • PDF

Elicitors which Induce the Accumulation of p-Coumaroylamino Acids in Ephedra distachya Cultures

  • Song, Kyung-Sik;Sankawa, Ushio;Ebizuka, Yutaka
    • Archives of Pharmacal Research
    • /
    • 제17권1호
    • /
    • pp.26-30
    • /
    • 1994
  • Some ammonium oxalate soluble pectic fragments prepared from cultured cell wall of Ephycla distrahya elicited the accumulation of p-coumarocylamino acids (p-CAA) in E. distachya cultures while water soluble and alkali soluble fractions had no activity. Partial purification of the pectic fragments fraction using DEAE-cellulose chromatography afforded two active fractions (PS-I and PS-II) which were composed of mainly uronic acids (98-99 w/w %). They elicited the accumulation of p-CAA in an amount of 52-60 nmol per gram fresh weight of cultures. The acidic sugar compositions of PS-I and PS-II were found to be galacturonic acid and glucuronic acid by TLC analysis. They were supposed to act as endogenous elicitors of p-CAA accumulation. In order to investigate the effect of ethylene on p-CAA accumulation, Ethrel, which is known as ethylene generator, and ACC(1-aminocyclopropane-1-carboxylic acid), a direct precusor of ethylene biosynthesis, were added to the culture. However, they did not glycopeptide elicitor [(Con A-II)], either. Consequently, no relationships between ethylene and p-CAA accumulation were recognized. Several tentative elicitors were teted for their activity. Commercial yeast glucan, $CuCl_2$, laminarin and laminariheptaose had slight activity whereas ${\alpha}$-methylmannopyranoside and commercial yeast mannan had no elicitor activity. ${\alpha}$-methylmannopyranoside which has been known as a tentative inhibitor of glucan elicitor in Glycine max did not affect on the elicitor activity of Con A-II.

  • PDF

Adsorption of Organic Compounds onto Mineral Substrate Prepared from Oyster Shell Waste

  • Jeon, Young-Woong;Jo, Myung-Chan;Noh, Byeong-Il;Shin, Choon-Hwan
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_2호
    • /
    • pp.79-88
    • /
    • 2001
  • Humic acids react with chlorine to produce Trihalomethanes(THMs), known as carcinogens, during disinfection, the last stage in water purification. Currently, the removal of organic humic acids is considered the best approach to solve the problem of THM formation. Accordingly, the current study examined the adsorption of organic compounds of humic acids onto an inorganic carrier prepared from oyster shell waste. The adsorbent used was activated oyster shell powder(HAP) and silver ion-exchanged oyster shell powder(HAP-Ag), with CaCO$_3$ as the control. The adsorbates were phthalic acid, chelidamic acid, catechol, dodecylpyridinium chloride(DP), and 2-ethyl phenol(2-EP). The adsorption experiments were carried out in a batch shaker at $25^{\circ}C$ for 15 hours. The equilibrium concentration of the adsorbate solution was analyzed using a UV spectrophotometer and the data fitted to the Langmuir isotherm model. Since the solution pH values were found to be greater than the pKa values of the organic compounds used as adsorbates, the compounds apparently existed in ionic form. The adsorptive affinities of the organic acid and phenolic compounds varied depending on the interaction of electrostatic forces, ion exchange, and chelation. More carboxylic acids and catechol, rather than DP and 2-EP, were adsorbed onto HAP and HAP-Ag. HAP and HAP-Ag exhibited a greater adsorptive affinity for the organic compounds than CaCO$_3$, used as the control.

  • PDF

Mixed Intramolecular Hydrogen Bonding in Dihydroxythiophene-based Units and Boron and Technetium Chelation

  • Ko, Sang-won;Park, Sang-Hyun;Gwon, Hui-Jeong;Lee, Jun-seong;Kim, Min-Jeong;Kwak, Yeon-ju;Do, Young-kyu;Churchill, David G.
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.243-250
    • /
    • 2006
  • Three novel potential metal ion chelating units have been synthesized and characterized: 5-hexylcarbamoyl-3,4-dihydroxythiophene-2-carboxylic acid methyl ester (5), 3-benzyloxy-4-hydroxythiophene-2,5-dicarboxylic acid bis-hexylamide (6), and 3,4-dihydroxythiophene-2,5-dicarboxylic acid bis-hexylamide (7). The crystal structure of 6 was obtained and suggests the presence of three distinct intramolecular hydrogen bonds, namely $[N_{amide}-H{\cdot}{\cdot}{\cdot}O]$ $[O-H{\cdot}{\cdot}{\cdot}O_{amide}]$ and $[N_{amide}-H{\cdot}{\cdot}{\cdot}S]$. Boron chelation with 5, 6 and 7 through the use of $BF_3, \;B(OH)_3 \;or \;B(OMe)_3$ was probed by $^1H$, $^{11}B$, and $^{13}C$ NMR spectroscopy. Technetium (I) chelation with 5, 6 and 7 was also studied via HPLC elutions using $[^{99m}Tc(CO)_3(OH_2)_3]^+$.

Stabilization of Quinonoid Intermediate E-Q by Glu32 of D-Amino Acid Transaminase

  • Ro Hyeon-Su;Jeon Che-Ok;Kim Hak-Sung;Sung Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1434-1440
    • /
    • 2006
  • The stable anchorage of pyridoxal 5'-phosphate (PLP) in the active site of D-amino acid transaminase (D-AT) is crucial for the enzyme catalysis. The three-dimensional structure of D-AT revealed that Glu32 is one of the active site groups that may playa role in PLP binding. To prove the role of Glu32 in PLP stability, we firstly checked the rate of the potential rate-limiting step. The kinetic analysis showed that the rate of the ${\alpha}$-deprotonation step reduced to 26-folds in E32A mutant enzyme. Spectral analyses of the reaction of D-AT with D-serine revealed that the E32A mutant enzyme failed to stabilize the key enzyme-substrate intermediate, namely a quinonoid intermediate (E-Q). Finally, analysis of circular dichroism (CD) on the wild-type and E32A mutant enzymes showed that the optical activity of PLP in the enzyme active site was lost by the removal of the carboxylic group, proving that Glu32 is indeed involved in the cofactor anchorage. The results suggested that the electrostatic interaction network through the groups from PLP, Glu32, His47, and Arg50, which was observed from the three-dimensional structure of the enzyme, plays a crucial role in the stable anchorage of the cofactor to give necessary torsion to the plane of the cofactor-substrate complex.

글루코스를 함유한 음이온 하이드로젤의 pH 감응성 동적 팽윤거동 (pH-Sensitive Dynamic Swelling Behavior of Glucose-containing Anionic Hydrogels)

  • 김범상
    • Korean Chemical Engineering Research
    • /
    • 제43권2호
    • /
    • pp.299-304
    • /
    • 2005
  • 음이온 하이드로젤은 그들이 가지고 있는 pH 감응성 팽윤거동 때문에 단백질 약물의 경구투여용 전달물질로써 많은 주목을 받고 있다. 본 연구에서는 음이온 하이드로젤의 pH 변화에 따른 용매의 침투 메커니즘을 규명하기 위하여 methacrylic acid와 2-methacryloxyehtyl glucoside를 공중합하여 P(MAA-co-MEG) 하이드로젤을 합성한 후 pH 변화에 따른 하이드로젤의 동적 팽윤거동을 관찰하였다. 용매의 침투 메커니즘이 Fickian 또는 non-Fickian 인지를 설명할 수 있는 특성지수 n을 $M_t/M_{\infty}=kt^n$ 관계식으로부터 계산하였다. 하이드로젤에 대한 용매의 침투 메커니즘은 주위 pH의 영향을 많이 받았으며, 젤의 $pK_a$ 보다 높은 pH인 7.0에서는 침투 메커니즘이 상대적으로 고분자사슬의 이완에 의한 지배를 많이 받는다는 것을 알 수 있었다. 한편, pH 7.0에서 고분자 이완에 의한 용매의 침투 메커니즘은 하이드로젤에 존재하는 카르복실산의 이온화에 기인한 것임을 ATR-FTIR 분광분석을 이용하여 확인하였다.

카르복시산을 포함하는 Grafted EPDM의 접착특성에 관한 연구 (Studies on Adhesion Properties of Grafted EPDM Containing Carboxylic Acid Group)

  • 김동호;윤유미;정일두;박찬영;배종우;오상택;김구니
    • 접착 및 계면
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2012
  • EPDM에 카르복시산을 포함하는 아크릴 단량체인 methacrylic acid (MA)가 도입된 grafted EPDM을 합성하여 MA의 grafting ratio가 탄성체의 물성과 다른 고무와의 접착특성에 미치는 영향을 연구하였다. Grafted EPDM의 storage modulus는 특정온도까지는 sulfur로 가교한 EPDM vulcanizate보다 높게 유지되다가 온도가 더 높아지면 2차 결합력이 약해지면서 급격하게 감소되는 것이 관찰되었다. EPDM에 수소결합을 유도할 수 있는 반응기를 도입했을 때 grafted EPDM 분자들 간의 aggregate 형성과 그라프트된 MA의 결정성으로 인해 우수한 기계적 물성을 나타내었다. EPDM 자체는 극성이 낮고 다른 종류의 고무와 분자간 결합력이 약해서 접착이 제대로 이루어지지 않았으며 그라프트된 MA의 함량이 증가할수록 접착강도가 더 높아졌으며 MA의 grafting ratio가 10% 이상일 때에는 접착평가 시 고무시편이 부분적으로 파괴될 정도로 접착력이 우수하였다.

Cytotoxic, Anti-Inflammatory and Adipogenic Effects of Inophyllum D, Calanone, Isocordato-oblongic acid, and Morelloflavone on Cell Lines

  • Taher, Muhammad;Aminuddin, Amnani;Susanti, Deny;Aminudin, Nurul Iman;On, Shamsul;Ahmad, Farediah;Hamidon, Hanisuhana
    • Natural Product Sciences
    • /
    • 제22권2호
    • /
    • pp.122-128
    • /
    • 2016
  • This paper reports in vitro cytotoxic, anti-inflammatory and adipocyte diffentiation with adipogenic effects of coumarins inophyllum D (1) and calanone (2), and a chromanone carboxylic acid namely isocordato-oblongic acid (3) isolated from Calophyllum symingtonianum as well as a biflavonoid morelloflavone (4) isolated from Garcinia prainiana on MCF-7 breast adenocarcinoma RAW 264.7 macrophages and 3T3-L1 preadipocytes cells, respectively. The cytotoxicity study on MCF-7 cell was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Meanwhile, the study of anti-inflammatory effects in RAW 264.7 macrophages and adipogenic effects on 3T3-L1 pre-adipocytes were conducted through nitrite determination assay and induction of adipocyte differentiation, respectively. In the cytotoxicity study, inophyllum D (1) was the only compounds that exhibited significant cytotoxic effect against MCF-7 cell with $IC_{50}$ of $84{\mu}g/mL$. Further, all by inhibiting the compounds have shown anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages of nitrite concentration with production. In addition, the compounds also exhibited adipogenic effects on 3T3-L1 pre-adipocytes by stimulating lipid formation. Thus, this study may provide significant input in discovery of the potential effects cytotoxic, anti-inflammatory and adipogenic agents.

Involvement of Pyridoxine/Pyridoxamine 5′- Phosphate Oxidase (PDX3) in Ethylene-Induced Auxin Biosynthesis in the Arabidopsis Root

  • Kim, Gyuree;Jang, Sejeong;Yoon, Eun Kyung;Lee, Shin Ae;Dhar, Souvik;Kim, Jinkwon;Lee, Myeong Min;Lim, Jun
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.1033-1044
    • /
    • 2018
  • As sessile organisms, plants have evolved to adjust their growth and development to environmental changes. It has been well documented that the crosstalk between different plant hormones plays important roles in the coordination of growth and development of the plant. Here, we describe a novel recessive mutant, mildly insensitive to ethylene (mine), which displayed insensitivity to the ethylene precursor, ACC (1-aminocyclopropane-1-carboxylic acid), in the root under the dark-grown conditions. By contrast, mine roots exhibited a normal growth response to exogenous IAA (indole-3-acetic acid). Thus, it appears that the growth responses of mine to ACC and IAA resemble those of weak ethylene insensitive (wei) mutants. To understand the molecular events underlying the crosstalk between ethylene and auxin in the root, we identified the MINE locus and found that the MINE gene encodes the pyridoxine 5′-phosphate (PNP)/pyridoxamine 5′-phosphate (PMP) oxidase, PDX3. Our results revealed that MINE/PDX3 likely plays a role in the conversion of the auxin precursor tryptophan to indole-3-pyruvic acid in the auxin biosynthesis pathway, in which TAA1 (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1) and its related genes (TRYPTOPHAN AMINOTRANSFERASE RELATED 1 and 2; TAR1 and TAR2) are involved. Considering that TAA1 and TARs belong to a subgroup of PLP (pyridoxal-5′-phosphate)-dependent enzymes, we propose that PLP produced by MINE/PDX3 acts as a cofactor in TAA1/TAR-dependent auxin biosynthesis induced by ethylene, which in turn influences the crosstalk between ethylene and auxin in the Arabidopsis root.