• Title/Summary/Keyword: Carbon-phenolic

Search Result 200, Processing Time 0.024 seconds

A study on the processing of phenolic composite reinforced with hybrid of PAN based/Rayon based carbon fabrics using FBG sensor system (FBG 센서를 이용한 PAN계/Rayon계 탄소 직물 하이브리드 복합재료의 성형 공정 연구)

  • Kim Jae Hong;Park Jong Kyu;Kang Tae Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.159-162
    • /
    • 2004
  • The processing of phenolic composite reinforced with hybrid of PAN based/Rayon based carbon fabrics using FBG sensor and thermocouple was studied. Once the composite is cured, the reflection spectrum from the FBG sensor shifted the center wavelength with an increase in the temperature. Also, the change in the form of the reflection spectrum obtained during the cooling process of the cure cycle was caused by the thermal shrinkage. During the curing process, uniform distribution of the temperature profile was observed throughout the sample.

  • PDF

Design of the Hybrid Composite proceeding Bearing Assembled by Interference Fit (억지끼워맞춤을 이용한 하이브리드 복합재료 저널베어링의 설계)

  • Kim, Seong-Su;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.219-223
    • /
    • 2005
  • In this work, a hybrid composite proceeding bearing (HCJB) composed of carbon/phenolic laminated composite bush and steel housing was designed for marine vessels because the composite proceeding bearing reduces the possibility of the seizure problem between the proceeding and bearing. The two components of bearing were assembled by interference fit joining method and a series of durability tests were conducted using the laboratory bench with the lubricants of SAE 30 oil, water, and sea water. That the HCJB was found reliable under the interference fitting loads and environmental temperature change.

  • PDF

Densification of Carbon/Carbon Composites by Pulse CVI with and without Residence (펄스화학기상침트법에 의한 탄소/탄소 복합재료의 치밀화에 있어서 가스유지시간 유무의 영향)

  • 이용근;류호진;박희동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.935-941
    • /
    • 1996
  • Two-dimensional carbon/carbon preforms made of PAN-based carbon yarn and phenolic resin were densified with pyrolysis of propane by pulse chemical vapor infiltration where repeated the cycle of gas introduction residence and evacuation. Maximim density increment was 14% when infiltration temperature and time were 100$0^{\circ}C$ and 21.25 hrs respectively. The distribution of deposits of pyrocarbon by this process has been occurred uniformly in the bottom middle and top of carbon/carbon composite preform Pulse CVI with residence is most effective in increasing density and shortening infiltration time among isothermal CVI and pulse CVI with and without residence.

  • PDF

Development of Carbon-Ceramic Composites using Fly Ash and Carbon Fibers as Reinforcement

  • Manocha, S.;Patel, Rakesh
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • Carbon-ceramic composites were fabricated by using fly ash and PANOX fibers as reinforcement. Fly ash, because of its small size particles e.g. submicron to micron level can be effectively dispersed along with fibrous reinforcements. Phenolic resin was used as carbon precursor. Both dry as well as wet methods were used for forming composites. The resulting composites were characterized for their microstructure, thermal and mechanical properties. The microstructure and mechanical properties of composites are found to be dependent on type of the fly ash, fibrous reinforcements as well as processing parameters. The addition of fly ash improves hardness and the fibers, which get co-carbonized on heat treatment, increase the flexural strength of the carbon-ceramic composites. Composites with dual reinforcement exhibit about 30-40% higher strength as compared to the composites made with single reinforcement, either with fly ash as filler or with chopped fibers.

  • PDF

Morphology control of glassy carbon coating layer to additive ethylene glycol and phenolic resin (페놀수지 및 에틸렌 글리콜을 첨가한 유리질 카본 코팅층의 물성 제어)

  • Joo, Sang Hyun;Joo, Young Jun;Lee, Hyuk Jun;Sim, Young Jin;Park, Dong Jin;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.3
    • /
    • pp.89-95
    • /
    • 2022
  • In this study, glassy carbon coating was performed on the graphite using a phenolic resin and a curing agent was mixed with ethylene glycol as an additive to form the uniform surface. The phenolic resin was dried and cured under the environments of hot air, then converted into a glassy carbon layer by pyrolysis at 500~1,500℃. FTIR, XRD, SEM analysis, and density/porosity/contact angle measurement were performed for characterization of glassy carbon. The pyrolysis temperature for high-quality glassy carbon was optimized to be about 1,000℃. As the content of the additive increased, the effect of reducing surface defects on the coated surface, reduction of porosity, increase of contact angle, and increase of density were investigated in this study. The method of forming a glassy carbon coating layer through an additive is expected to be applicable to graphite coating and other fields.

Test Method on Interlaminar Tensile Properties of Carbon Fabric Reinforced Phenolic Composites (카본-페놀 직물복합재료의 층간인장물성 측정기법)

  • Lee Ji-Hyung;Kim Hyoung-Geun;Lee Hyung-Sik;Park Young-Che;Ju Se-Kyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.81-85
    • /
    • 2006
  • Through-the-thickness properties of thick-walled cylindrical composites are required to determine structural performances because interlaminar tensile stress is primarily responsible for structural failure of the composites during their curing process. It is necessary for evaluating the tensile properties to find individual test methods to find appropriate methods because there are no recognised international standards(test methods and test specifications) available for generating reliable tensile properties in the direction. This paper has performed an experimental Study to measure that properties of carbon fabric/phenolic composites are produced by domestic company. Several test methods using an aluminum specimen were compared and evaluated. The best method, found out, was adopted to measure transverse through-the-thickness properties of composite materials. The results show that strain trends on four faces of composite specimen are the same.

  • PDF

Test Method on Interlaminar Tensile Properties of Carbon fabric Reinforced Phenolic Composites (카본-페놀 직물복합재료의 층간인장물성 측정기법)

  • Lee, Ji-Hyung;Kim, Hyoung-Geun;Lee, Hyung-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.48-52
    • /
    • 2006
  • Through-the-thickness properties of thick-walled cylindrical composites are required to determine structural performances because interlaminar tensile stress is primarily responsible for structural failure of the composites during their curing process. It is necessary for evaluating the tensile properties to find individual test methods to find appropriate methods because there are no recognised international standards(test methods and test specifications) available for generating reliable tensile properties in the direction. This paper has performed an experimental study to measure that properties of carbon fabric/phenolic composites which are produced by domestic company. Several test methods using an aluminum specimen were compared and evaluated. The best test method to measure transverse through-the-thickness properties of composite materials was developed by the experimental results that strain trends on all faces of composite specimen are the same.

Preparation of Activated Carbon Screen Using Stainless Steel Mesh and Cellulose Fiber (스테인레스 망과 섬유를 이용한 활성탄소 망의 제조)

  • Shin, Jinhwan;Kim, Taeyoung;Jeoung, Youngdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • In this work, stainless steel mesh-supported activated carbons were prepared using phenolic resin and cellulose fiber. $ZnCl_2$ was used as a activation reagent in this work. $ZnCl_2$-chemical activation method has been proposed to produce highly porous activated carbons. The objectives of this work were to develop an optimal condition for manufacturing activated carbon assemblies screen from stainless steel mesh and phenolic resin. The iodine number was more increased over activation temperature of $450^{\circ}C$. Iodine number was 657 mg/g at activation temperature of $550^{\circ}C$, penolic resin concentration 20% and $ZnCl_2$ concentration 15%. Iodine number was 1359.4 mg/g when 10% cellulose added to these conditions.

  • PDF

Measurement and Prediction of 3-Dimensional Thermo-Mechanical Propertoes of Carbon-phenolic 8-harness Satin Weave Composites (탄소/페놀 8-매 주자직 복합재료의 3차원 열기계적 등가물성치에 관한 연구)

  • U,Gyeong-Sik;Kim,Pil-Jong;Yun,Gwang-Jun;Gu,Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.41-52
    • /
    • 2003
  • In this paper, three-dimensional thermo-mechanical properties of carbon-phenolic 8-hamess satin weave composites were predicted considering geometric parameters of microstructures. The effective properties were calculated by a series of numerical experiments based on unit cell analysis. The microstructural details were modeled through macro-elements, and the periodic boundary conditions were derived for corresponding un it cell types. The Monte Carlo method was employed to consider the random phase shift between the layers, and the results were investigated on the effect of the geometric parameters of shift, number of layers and waviness ratios. Experimental tests were also performed and the results were compared.

Structural and Chemical Characterization of Aquatic Humic Substances in Advanced Water Treatment Processes (고도정수처리 공정에서 수질계 휴믹물질의 구조 및 화학적 특성분석)

  • Kim, Hyun-Chul;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.240-246
    • /
    • 2005
  • Humic substances HS) from process waters at advanced water treatment plant consisted of GAC and Ozone/GAC processes were isolated and extracted by physicochemical fractionation methods to investigate their characteristics. They are characterized for their functionality, chemical composition, spectroscopic characteristics using FT-IR and $^1H$-NMR spectroscopy. Humic fraction gradually decreased from 36.3% to 24.2% from 0.45 to 0.30 mgC/L) through ozonation and carbon adsorption. The humic fraction was isolated into the phenolic and carboxylic groups using A-21 resin, and the concentration of phenolic groups gradually decreased from 38.4% to 23.5% (from 4.9 to $3.2\;{\mu}M/L$ as phenolic-OH) through ozonation and carbon adsorption. In the case of carboxylic groups, the concentration decreased from 61.6% to 43.3% (from 7.8 to $5.8\;{\mu}M/L$ as COOH) through the water treatment processes. On the other hand, concentrations of those roups decreased from 38.4% to 24.0% and 61.6% to 44.9% through carbon adsorption without ozonation, respectively. The structural changes of HS identified from FT-IR and $^1H$-NMR were consistent with the results from the isolation of functional groups in HS.