• Title/Summary/Keyword: Carbon-neutral

Search Result 363, Processing Time 0.028 seconds

A Study on Strategies of Smart Green City - The Priority Analysis and Application of Planning Technique -

  • Lee, Seo-Jeong;Oh, Deog-Seong
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.5-17
    • /
    • 2015
  • Purpose: The goal of this research is to identify the planning techniques of Smart Green City with Ubiquitous method and carbon-neutral city planning techniques and to induce the main planning techniques through the analysis of relative importance and practical adaptation. Method: First of all, eighteen planning techniques were derived and categorized into three organization systems and six sectors through literature review and FGI analysis considering the applicability of Ubiquitous service for carbon-neutral city planning techniques. Secondly, based on expert surveys and AHP analysis, the importance of Smart Green City planning techniques was evaluated. Thirdly, using case study, six cases related to Smart Green City were analyzed for the current status of application of planning techniques. Lastly, considering the importance of planning techniques and practical aspects, the characteristics of Smart Green City and its implication were estimated. Result: Energy, Resource and Waste and Transportation sector were identified as important sectors for Smart Green City. In addition, 'Construction of Smart Grid', 'System for Utilization of New & Renewable Energy', 'Smart Resource Circulation Management System', 'Establishment of Public Transportation Information System basis', 'Construction of Pedestrian / Bicycle oriented Road Environment' are essential planning techniques to create Smart Green City.

Design Optimization on 2 Vane Pump of Wastewater Treatment for Efficiency Improvement (효율향상을 위한 폐수처리용 2 Vane 펌프 설계 최적화)

  • KIM, SUNG;MA, SANG-BUM;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.277-284
    • /
    • 2021
  • This paper deals with multi-objective optimization using response surface method to improve the hydraulic performances of a 2 vane pump for wastewater treatment. For analyzing the internal flow field in the pump, steady Reynolds-averaged Navier-Stokes equations were solved with the shear stress transport turbulence model as a turbulence closure model. The impeller and volute variables were defined in the shape of the 2 vane pump. The objective functions were set to satisfy the total head at the design flow rate as well as to improve the efficiency. The hydraulic performance of the optimally designed shape was verified by numerical analysis results.

Design of Non-flammable Mixed Refrigerant Joule-Thomson Refrigerator for Semiconductor Etching Process (반도체 식각공정을 위한 비가연성 혼합냉매 줄톰슨 냉동기 설계)

  • Lee, Cheonkyu;Kim, Jin Man;Lee, Jung-Gil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.144-149
    • /
    • 2022
  • A cryogenic Mixed Refrigerant Joule-Thomson refrigeration cycle was designed to be applied to the semiconductor etching process with non-flammable constituents. 3-stage cascade refrigerator, single mixed refrigerant Joule-Thomson refrigerator, and 2-stage cascade type mixed refrigerant Joule-Thomson refrigerator are analyzed to figure out the coefficient of performance. Non-flammable mixture of argon(Ar), tetrafluoromethane(R14), trifluoromethane (R23) and octafluoropropane(R218) were utilized to analyze the refrigeration cycle efficiency. The designed refrigeration cycle was adapted to cool down the coolant of HFE7200(Ethoxy-nonafluorobutane, C4F9OC2H5) with certain constraints. Maximum coefficient of performance of the refrigeration system is obtained as 0.289 for the cooling temperature lower than -100℃. The detailed result of the coefficient of performance according to the mixture composition is discussed in this study.

Designing and Creating a Model Garden to Demonstrate Carbon Reduction - Case Study of Carbon Reduction Model Garden at the Sejong National Arboretum - (탄소저감 현장 실증을 위한 모델정원 설계와 조성 - 국립세종수목원 탄소저감 모델 정원을 사례로 -)

  • Park, Byunghoon;Seo, Jayoo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.75-87
    • /
    • 2023
  • This study presents an experimental design for demonstrating the role of nature-based solutions to climate change in the landscape and garden sector. The study suggests spatial strategies for a carbon-neutral society and its role as a cultural industry. This paper describes the use of a low-maintenance garden as part of a strategy for carbon reduction with the goal of protecting the environment and forming a carbon-neutral society. To this end, this study involved the design and construction of a realistic model garden to provide scientific data on the functions, spatial elements, and carbon neutrality of carbon-reducing gardens. The target site is located in the Sejong National Arboretum. The test area in which the carbon-reducing function is measured is located in the centre of the site, and other spaces include dry gardens, community gardens, and flower gardens intended for exhibition and relaxation. The experimental area is divided into several smaller areas within which the carbon-reducing effect is analysed according to the amount of biochar installed, the planting density, and the plant species present. The application of facilities and construction methods to promote carbon reduction were based on the method known as '10 types of carbon gardening for the earth'. In the model garden, we employed rainwater utilization facilities and used low-carbon certified wood and local materials. The carbon reduction effect of each facility and construction method is compared and presented here. The results are expected to serve as an important basis for realizing a carbon-neutral society and can be used as a reference in various fields that require sustainable development, such as the garden industry.

Chemical Characterization of Neutral Extracts Prepared by Treating Pinus radiata Bark with Sodium Bicarbonate

  • MUN, Ji Sun;KIM, Hwan Chul;MUN, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.878-887
    • /
    • 2020
  • A neutral extract (NE), that is soluble in cold water and has excellent antioxidant activity, from Pinus radiata pine bark was prepared by sodium bicarbonate treatment, and its chemical characteristics were investigated. NE was prepared by treating P. radiata bark with 0.8% NaHCO3 aqueous solution with a 5 : 1 liquor-to-bark ratio at boiling temperature for 1 h, resulting in 44% yield and final pH of 6.66. The yield of NE was 11% higher than that of the hot water extract (HWE) due to the increase in the solubility of polyphenols, the main component in the bark, by NaHCO3 treatment. NE was characterized through FT-IR, NMR, and MALDI TOF MS analyses. The results indicated that NE is mostly composed of proanthocyanidins (PAs) consisting of procyanidin (PC) units. The acetylated neutral extract (Ac-NE) had weight average molecular weight (${\bar{M}}w$) of 5,300 Da. The Ac-NE had wide molecular weight distribution and its polydispersity (${\bar{M}}w/{\bar{M}}n$) was 6 times higher than that of pure PA. The antioxidant activity of NE was determined by 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and showed that NE had comparable antioxidant activity with pure PA.

Effect of Chemical Modification of Carbon Supports on Electrochemical Activities for Pt-Ru Catalysts of Fuel Cells (탄소지지체의 화학적 변형에 따른 연료전지용 백금-루테늄 촉매의 전기화학적 활성의 영향)

  • Kim, Byung-Ju;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.94.1-94.1
    • /
    • 2011
  • In this work, ordered mesoporous carbons (OMCs) were prepared by the conventional templating method using mesoporous silica (SBA-15) for Pt-Ru catalyst supports in fuel cells. The influence of surface modification on carbon supports on the electrochemical activities of Pt-Ru/OMCs was investigated with different pH. The neutral-treated OMCs (N-OMCs), base-treated OMCs (B-OMCs), and acid-treated OMCs (A-OMCs) were prepared by treating OMCs with 2 M $C_6H_6$, 2 M KOH, and 2 M $H_3PO_4$, respectively. The surface characteristic of the carbon supports were determined X-ray photoelectron spectroscopy (XPS). The electrochemical activities of the Pt-Ru catalysts had been enhanced when the OMCs supports were treated by basic or neutral agents, while the electrochemical activities had been decayed for the A-OMCs supported Pt-Ru.

  • PDF

Performance Analysis of Adiabatic Reactor in Thermochemical Carbon Dioxide Methanation Process for Carbon Neutral Methane Production (탄소중립 메탄 생산을 위한 열화학적 이산화탄소 메탄화 공정의 단열 반응기 성능 분석)

  • JINWOO KIM;YOUNGDON YOO;MINHYE SEO;JONGMIN BAEK;SUHYUN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.3
    • /
    • pp.316-326
    • /
    • 2023
  • Development of carbon-neutral fuel production technologies to solve climate change issues is progressing worldwide. Among them, methane can be produced through the synthesis of hydrogen produced by renewable energy and carbon dioxide captured through a CO2 methanation reaction, and the fuel produced in this way is called synthetic methane or e-methane. The CO2 methanation reaction can be conducted via biological or thermochemical methods. In this study, a 30 Nm3/h thermochemical CO2 methanation process consisting of an isothermal reactor and an adiabatic reactor was used. The CO2 conversion rate and methane concentration according to the temperature measurement results at the center and outside of the adiabatic reactor were analyzed. The gas flow into the adiabatic reactor was found to reach equilibrium after about 1.10 seconds or more by evaluating the residence time. Furthermore, experimental and analysis results were compared to evaluate performance of the reactor.

V2O5WO3/TiO2 Catalyst Prepared on Nanodispersed TiO2 for NH3-SCR: Relationship between D ispersed Particle Size of TiO2 and Maximum Decomposition Temperature of NOx (NH3-SCR용 나노분산 TiO2 담체상에 제조된 V2O5WO3/TiO2 촉매: TiO2 분산입도와 NOx 최대 분해온도와의 상관성)

  • Min Chae, Seo;Se-Min, Ban;Jae Gu, Heo;Yong Sik, Chu;Kyung-Seok, Moon;Dae-Sung, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.496-507
    • /
    • 2022
  • For the selective catalytic reduction of NOx with ammonia (NH3-SCR), a V2O5WO3/TiO2 (VW/nTi) catalyst was prepared using V2O5 and WO3 on a nanodispersed TiO2 (nTi) support by simple impregnation process. The nTi support was dispersed for 0~3 hrs under controlled bead-milling in ethanol. The average particle size (D50) of nTi was reduced from 582 nm to 93 nm depending on the milling time. The NOx activity of these catalysts with maximum temperature shift was influenced by the dispersion of the TiO2. For the V0.5W2/nTi-0h catalyst, prepared with 582 nm nTi-0h before milling, the decomposition temperature with over 94 % NOx conversion had a narrow temperature window, within the range of 365-391 ℃. Similarly, the V0.5W2/nTi-2h catalyst, prepared with 107 nm nTi-2h bead-milled for 2hrs, showed a broad temperature window in the range of 358~450 ℃. However, the V0.5W2/Ti catalyst (D50 = 2.4 ㎛, aqueous, without milling) was observed at 325-385 ℃. Our results could pave the way for the production of effective NOx decomposition catalysts with a higher temperature range. This approach is also better at facilitating the dispersion on the support material. NH3-TPD, H2-TPR, FT-IR, and XPS were used to investigate the role of nTi in the DeNOx catalyst.

Study on Gas Concentration Measurement of O2 and NO Using Calibration-free Wavelength Modulation Spectroscopy in Visible and Mid-Infrared Region (가시광선과 중적외선 영역의 무보정 파장 변조 분광법을 이용한 O2와 NO 가스 농도 측정에 관한 연구)

  • Aran Song;Geunhui Ju;Kanghyun Kim;Jungho Hwang;Daehae Kim;Changyeop Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.70-77
    • /
    • 2023
  • Air environment regulations have been strengthened due to increasing air pollutant emissions, the target of reducing emissions has increased and interest in gas measurement methods is also increasing. The sampling method is mainly used, but due to the spatial and temporal measurement limitations, the laser absorption spectroscopy which is a real-time and in-situ method is in the spotlight. In this study, we studied the wavelength modulation spectroscopy and described the calibration-free algorithm. The developed algorithm was modified to reflect 46 multi-absorption lines and was applied to light absorption signal analysis in visible and mid-infrared regions. In addition, the difference between the modulation parameters of laser was analyzed. As a result of reviewing the performance through O2 and NO gas measurement experiments of various concentration conditions, the linearity was R2O2=0.99999 and R2NO=0.99967.

Applicability analysis of carbondioxide conversion capture materials produced by desulfurization gypsum for cement admixture (시멘트 혼합재로서 정유사 탈황석고를 활용하여 제조한 탄산화물의 적용성 분석)

  • Hye-Jin Yu;Young-Jun Lee;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.54-60
    • /
    • 2023
  • In this study, microstructure and basic property analysis of DG (Desulfurization gypsum) and CCMs (Carbondioxide conversion capture materials) made by reacting CO2 with DG were conducted to analyze applicability as a cement admixture. The main crystalline phases of DG were CaO and CaSO4, and CCMs were CaSO4, CaCO3, Ca(OH)2 and CaSO4·H2O. As a result of particle size analysis, the difference in average particle sizes between the two materials was about 7 ㎛. No major heavy metals were detected in the CCMs, and as a result o f TGA, the CO2 decomposition of CCMs was more than twice as high as that of DG. Therefore, it was judged that CCMs could be used as a cement admixture through optimization of manufacturing conditions. As a results of measuring the strength behavior of DG and CCMs mixture ratios, the long-term strength of CCMs-mixed mortar was higher, and this is due to the filler effect of CaCO3 in CCMs.