• Title/Summary/Keyword: Carbon-coated $TiO_2$

Search Result 53, Processing Time 0.03 seconds

Fabrication and Evaluation of a Total Organic Carbon Analyzer Using Photocatalysis

  • Do Yeon Lee;Jeong Hee Shin;Jong-Hoo Paik
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.140-146
    • /
    • 2023
  • Water quality is crucial for human health and the environment. Accurate measurement of the quantity of organic carbon in water is essential for water quality evaluation, identification of water pollution sources, and appropriate implementation of water treatment measures. Total organic carbon (TOC) analysis is an important tool for this purpose. Although other methods, such as chemical oxygen demand (COD) and biochemical oxygen demand (BOD) are also used to measure organic carbon in water, they have limitations that make TOC analysis a more favorable option in certain situations. For example, COD requires the use of toxic chemicals, and BOD is time-consuming and can produce inconsistent and unreliable results. In contrast, TOC analysis is rapid and reliable, providing accurate measurements of organic carbon content in water. However, common methods for TOC analysis can be complex and energy-intensive because of the use of high-temperature heaters for liquid-to-gas phase transitions and the use of acid, which present safety risks. This study focuses on a TOC analysis method using TiO2 photocatalysis, which has several advantages over conventional TOC analysis methods, including its low cost and easy maintenance. For TiO2, rutile and anatase powders are mixed with an inorganic binder and spray-coated onto a glass fiber substrate. The TiO2 powder and inorganic binder solutions are adjusted to optimize the photocatalytic reaction performance. The TiO2 photocatalysis method is a simple and low-power approach to TOC analysis, making it a promising alternative to commonly used TOC analysis methods. This study aims to contribute to the development of more efficient and cost-effective approaches for water quality analysis and management by exploring the effectiveness and reliability of the developed equipment.

Promoting Effect of MgO in the Photodegradation of Methylene Blue Over MgO/MWCNT/TiO2 Photocatalyst

  • Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.345-350
    • /
    • 2010
  • For the present paper, we prepared MgO/MWCNT/$TiO_2$ photocatalyst by using multi-walled carbon nanotubes (MWCNTs) pre-oxidized by m-chlorperbenzoic acid (MCPBA) with magnesium acetate tetrahydrate $(Mg(CH_2COO)_2\cdot4H_2O)$ and titanium n-butoxide $(Ti\{OC(CH_3)_3\}_4)$ as magnesium and titanium precursors. The prepared photocatalyst was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The decomposition of methylene blue (MB) solution was determined under irradiation of ultraviolet (UV) light. The XRD results show that the MgO/MWCNT/$TiO_2$ photocatalyst have cubic MgO structure and anatase $TiO_2$ structure. The porous structure and the $TiO_2$ agglomerate coated on the MgO/MWCNT composite can be observed in SEM images. The Mg, O, Ti and C elements can be also observed in MgO/MWCNT/$TiO_2$ photocatalyst from EDX results. The results of photodegradation of MB solution under UV light show that the concentration of MB solution decreased with an increase of UV irradiation time for all of the samples. Also, the MgO/MWCNT/$TiO_2$ photocatalyst has the best photocatalytic activity among these samples. It can be considered that the MgO/MWCNT/$TiO_2$ photocatalyst had a combined effect, the effect of MWCNT, which could absorb UV light to create photoinduced electrons $(e^-)$, and the electron trapping effect of MgO, which resulted in an increase of the photocatalytic activity of $TiO_2$.

Simultaneous Control of Phase Transformation and Crystal of Amorphous TiO2 Coating on MWCNT Surface

  • Cha, Yoo Lim;Park, Il Han;Moon, Kyung Hwan;Kim, Dong Hwan;Jung, Seung Il;Yoon, Young Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.618-624
    • /
    • 2018
  • We developed a mass production method that simultaneously controls the phase transformation and crystal size of $TiO_2$ coatings on multiwalled carbon nanotubes (MWCNTs). Initially, MWCNTs were successfully coated with amorphous 15-20-nm-thick $TiO_2$ by an in-situ sol-gel method. As the calcination temperature increased in both air and argon atmospheres, the amorphous $TiO_2$ was gradually transformed into the fully anatase phase at approximately $600^{\circ}C$, a mixture of the anatase and rutile phases at approximately $700^{\circ}C$, and the fully rutile phase above approximately $800^{\circ}C$. The crystal size increased with increasing calcination temperature. Moreover, above $600^{\circ}C$, the size of crystals formed in air was approximately twice that of crystals formed in argon. The reason is thought to be that MWCNTs, which continuously supported the stresses associated with the reconstructive phase transformation, disappeared owing to complete oxidation in air at these high temperatures.

Low-Temperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells

  • Md. Mahbubur, Rahman;Hyeong Cheol, Kang;Kicheon, Yoo;Jae-Joon, Lee
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.453-461
    • /
    • 2022
  • A chemically sintered and binder-free paste of TiO2 nanoparticles (NPs) was prepared using a binary-liquid mixture of 1-octanol and CCl4. The 1:1 (v/v) complex of CCl4 and 1-octanol easily interacted chemically with the TiO2 NPs and induced the formation of a highly viscous paste. The as-prepared binary-liquid paste (PBL)-based TiO2 film exhibited the complete removal of the binary-liquid and residuals with the subsequent low-temperature sintering (~150℃) and UV-O3 treatment. This facilitated the fabrication of TiO2 photoanodes for flexible dye-sensitized solar cells (f-DSSCs). For comparison purposes, pure 1-octanol-based TiO2 paste (PO) with moderate viscosity was prepared. The PBL-based TiO2 film exhibited strong adhesion and high mechanical stability with the conducting oxide coated glass and plastic substrates compared to the PO-based film. The corresponding low-temperature sintered PBL-based f-DSSC showed a power conversion efficiency (PCE) of 3.5%, while it was 2.0% for PO-based f-DSSC. The PBL-based low- and high-temperature (500℃) sintered glass-based rigid DSSCs exhibited the PCE of 6.0 and 6.3%, respectively, while this value was 7.1% for a 500℃ sintered rigid DSSC based on a commercial (or conventional) paste.

Control of Airborne Organic Pollutants Using Plug-Flow Reactor Coated With Carbon Material-Titania Mixtures Under Visible-Light Irradiation

  • Jo, Wan-Kuen;Kang, Hyun-Jung;Kim, Mo-Keun
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1263-1271
    • /
    • 2013
  • Graphene oxide (GO)-titania composites have emerged as an attractive heterogeneous photocatalyst that can enhance the photocatalytic activity of $TiO_2$ nanoparticles owing to their potential interaction of electronic and adsorption natures. Accordingly, $TiO_2$-GO mixtures were synthesized in this study using a simple chemical mixing process, and their heterogeneous photocatalytic activities were investigated to determine the degradation of airborne organic pollutants (benzene, ethyl benzene, and o-xylene (BEX)) under different operational conditions. The Fourier transform infrared spectroscopy results demonstrated the presence of GO for the $TiO_2$-GO composites. The average efficiencies of the $TiO_2$-GO mixtures for the decomposition of each component of BEX determined during the 3-h photocatalytic processes were 26%, 92%, and 96%, respectively, whereas the average efficiencies of the unmodified $TiO_2$ powder were 3%, 8%, and 10%, respectively. Furthermore, the degradation efficiency of the unmodified $TiO_2$ powder for all target compounds decreased during the 3-h photocatalytic processes, suggesting a potential deactivation even during such a short time period. Two operational conditions (air flow entering into the air-cleaning devices and the indoor pollution levels) were found to be important factors for the photocatalytic decomposition of BEX molecules. Taken together, these results show that a $TiO_2$-GO mixture can be applied effectively for the purification of airborne organic pollutants when the operating conditions are optimized.

Improved Performance of CdS/CdTe Quantum Dot-Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes

  • Shin, Hokyeong;Park, Taehee;Lee, Jongtaek;Lee, Junyoung;Yang, Jonghee;Han, Jin Wook;Yi, Whikun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2895-2900
    • /
    • 2014
  • We fabricated quantum dot-sensitized solar cells (QDSSCs) using cadmium sulfide (CdS) and cadmium telluride (CdTe) quantum dots (QDs) as sensitizers. A spin coated $TiO_2$ nanoparticle (NP) film on tin-doped indium oxide glass and sputtered Au on fluorine-doped tin oxide glass were used as photo-anode and counter electrode, respectively. CdS QDs were deposited onto the mesoporous $TiO_2$ layer by a successive ionic layer adsorption and reaction method. Pre-synthesized CdTe QDs were deposited onto a layer of CdS QDs using a direct adsorption technique. CdS/CdTe QDSSCs had high light harvesting ability compared with CdS or CdTe QDSSCs. QDSSCs incorporating single-walled carbon nanotubes (SWNTs), sprayed onto the substrate before deposition of the next layer or mixed with $TiO_2$ NPs, mostly exhibited enhanced photo cell efficiency compared with the pristine cell. In particular, a maximum rate increase of 24% was obtained with the solar cell containing a $TiO_2$ layer mixed with SWNTs.

Comparative Study of Corrosion Resistance of Organic Coating and Dry Coating on 304 Stainless Steels Used for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells (고분자전해질 연료전지 분리판용 304 스테인리스 강재의 유기습식 및 건식코팅에 따른 내식성 비교연구)

  • Yong Hyeon Kim;Jin Sung Park;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.242-251
    • /
    • 2023
  • The electrochemical corrosion behaviors of 304 stainless steels (STSs) with various coatings (organic coating and dry coating) were examined, and their applicability as bipolar plates in polymer electrolyte membrane fuel cells (PEMFCs) was validated. The results showed that the organic-coated samples had a significant decrease in anodic and cathodic current density compared to the uncoated sample. However, an increase in carbon black content in the organic coating or additional heat treatment at 700 ℃ resulted in a decrease in corrosion resistance. In addition, improvements in corrosion resistance achieved by adding TiO2 powder to the organic coating were found to be limited. In contrast, dry coating with TiC and CrC exhibited higher corrosion potential, significantly lower current density, and reduced contact resistance compared to the organic coatings. Notably, the TiC-coated sample showed a comparatively lower current density and more stable behavior than the CrC-coated sample. Based on a series of experimental results, a thin TiC coating without defects is proposed as a promising surface treatment strategy for STS bipolar plates in PEMFC.

Hybrid Water Treatment of Carbon Ultrafiltration Membrane and Polypropylene Beads Coated with Photocatalyst: Effect of Organic Materials, Photo-oxidation, and Adsorption in Water Back-flushing (탄소 한외여과막 및 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 물 역세척 시 유기물 및 광산화, 흡착의 영향)

  • Park, Jin Yong;Jung, Chung Ho
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.359-368
    • /
    • 2012
  • For hybrid water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between tubular membrane outside and module inside. Photocatalyst was PP (polypropylene) bead coated with $TiO_2$ powder by CVD (chemical vapor deposition) process. Water back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling for modified solution was prepared with humic acid and kaolin. Resistance of membrane fouling ($R_f$) decreased as humic acid concentration changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L, which was the same with the previous results. Then, treatment efficiencies of turbidity and humic acid were above 98.9% and 88.7%, respectively. As results of treatment portions of UF, UF + $TiO_2$, and UF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were 2.5% and 12.3%, respectively. Compared with the previous results, treatment portions of humic acid by adsorption and photo-oxidation were different depending on membrane material and pore size. As simplified the process, the membrane fouling resistance after 180 minutes' operation ($R_{f,180}$) increased and the final permeate flux decreased a little.

Synthesis and Electrochemical Properties of Carbon Coated Li4Ti5O12 using PVC (PVC를 원료로 탄소코팅한 Li4Ti5O12의 합성 및 전기화학적 특성)

  • Hyun, Si-Cheol;Na, Byung-Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • In this study, $Li_4Ti_5O_{12}$ anode materials for lithium ion battery were synthesized by dry ball-mill method. Polyvinyl chloride (PVC) as a carbon source was added to improve electrochemical properties. When the PVC was added after $Li_4Ti_5O_{12}$ formation, the spinel structure was well synthesized and it was confirmed by X-ray diffraction (XRD) experiments. When the carbon material was added before the synthesis and the heat treatment was performed, it was confirmed that a material having a different crystal structure was synthesized even when a small amount of carbon material was added. In the case of $Li_4Ti_5O_{12}$ without the carbon material, the electrical conductivity value was about $10{\mu}S\;m^{-1}$, which was very small and similar to that of the nonconductor. As the carbon was added, the electrical conductivity was greatly improved and increased up to 10,000 times. Electrochemical impedance spectroscopy (EIS) analysis showed that the size of semicircle corresponding to the resistance decreased with the carbon addition. This indicates that the resistance inside the electrode is reduced. According to the Cyclic voltammetry (CV) analysis, the potential difference between the oxidation peak and the reduction peak was reduced with carbon addition. This means that the rate of lithium ion insertion and deinsertion was increased. $Li_4Ti_5O_{12}$ with 9.5 wt% PVC added sample showed the best properties in rate capabilities of $180mA\;h\;g^{-1}$ at 0.2 C-rate, $165mA\;h\;g^{-1}$ at 0.5 C-rate, and $95.8mA\;h\;g^{-1}$ at 5 C-rate.

Spray-coated Carbon Nanotube Counter Electrodes for Dye-sensitized Solar Cells

  • Lee, Won-Jae;Lee, Dong-Yun;Kim, In-Sung;Jeong, Soon-Jong;Song, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.140-143
    • /
    • 2005
  • Carbon Nanotube(CNTs) counter electrode is a promising alternative to Platinum counter electrode for dye sensitized solar cells (DSSCs). In this study, CNT counter electrodes having different visible light transmittance were prepared on fluorine-doped tin oxide (FTO) glass surface by spray coating method. Microstructural images show that there are CNT-tangled region coated on FTO glass counter electrodes. Using such CNT counter electrodes and screen printed $TiO_2$ electrodes, DSSCs were assembled and its I-V characteristics have been studied and compared. Light energy conversion efficiency of DSSCs increased with decreasing in light transmittance of CNT counter electrode. Efficiency of DSSCs having CNT counter electrode is compatible to that of Pt counter electrode.