References
-
Ao, C. H., Lee, S. C., 2003, Enhancement effect of
$TiO_{2}$ immobilized on activated carbon filter for the photoremoval of pollutants at typical indoor air level. Appl Catal B, 44: 191-205. https://doi.org/10.1016/S0926-3373(03)00054-7 -
Chen, M. L, Oh, W. C., 2010, The improved phocatalytic properties of methylene blue for V2O3/CNT/
$TiO_{2}$ composite under visible light. Int J Photoenergy, 264831. - de. Blas, M., Navazo, M., Alonso, L., et al., 2012, Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources. Sci Total Environ, 426: 327-335. https://doi.org/10.1016/j.scitotenv.2012.04.003
- Demeestere, K., Dewulf, J., Van, Langenhove H., 2007, Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: state of the art. Crit Rev Environ Sci Technol, 37: 489-538. https://doi.org/10.1080/10643380600966467
- Eda, G., Fanchini, G., Chhowalla, M., 2008, Large-area ultrathin films of reduced grapheme oxide as a transparent and flexible electronic materials. Nat Nanotechnol, 3: 270-274. https://doi.org/10.1038/nnano.2008.83
- Fujishima, A., Zhang, X., Tryk, D. A., 2007, Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydrogen Energy, 32: 2664-2672. https://doi.org/10.1016/j.ijhydene.2006.09.009
-
Henderson, M. A., 2011, A surface science perspective on
$TiO_{2}$ photocatalysis. Surf Sci Rep, 66: 185-197. https://doi.org/10.1016/j.surfrep.2011.01.001 -
Jiang, G., Lin, Z., Chen, C., et al., 2011,
$TiO_{2}$ nanoparticles assembled on grapheme oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon, 49: 2693-2701. https://doi.org/10.1016/j.carbon.2011.02.059 - Jo, W. K., Kim, J. T., 2009, Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. J Hazard Mater, 164: 360-366. https://doi.org/10.1016/j.jhazmat.2008.08.033
- Jo, W. K., Shin, S. H., Hwang, E. S., 2011, Removal of dimethyl sulfide utilizing activated carbon fibersupported photocatalyst in continuous-flow system. J Hazard Mater, 191: 234-239. https://doi.org/10.1016/j.jhazmat.2011.04.069
- Kamat, P. V., 2010, Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett, 1: 520-527. https://doi.org/10.1021/jz900265j
- Kontos, A. G., Katsanaki, A., Likodimos, V., et al., 2012, Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania films. Chem Eng J, 179: 151-157. https://doi.org/10.1016/j.cej.2011.10.072
-
Leary, R., Westwood, A., 2011, Carbonaceous nanomaterials for the enhancement of
$TiO_{2}$ Photocatalysis, Carbon, 49: 741-772. https://doi.org/10.1016/j.carbon.2010.10.010 - Lightcap, I. V., Kosel, T. H., Kamat, P. V., 2010, Anchoring semiconductor and metal nanoparticles on a twodimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett, 10: 577-583. https://doi.org/10.1021/nl9035109
- Nguyen-Phan, T. D., Pham, V. H., Shin, E. W., et al., 2011, The role of grapheme oxide content on the adsorption enhanced photocatalysis of titanium dioxide/grapheme oxide composites. Chem Eng J, 170: 226-232. https://doi.org/10.1016/j.cej.2011.03.060
-
Ochiai, T., Fujishima, A., 2012, Photoelectrochemical properties of
$TiO_{2}$ photocatalyst and its applications for environmental purification. J Photochem Photobiol C, 13: 247-262. https://doi.org/10.1016/j.jphotochemrev.2012.07.001 - Paola, A. D., Garcia-Lopez, E., Marci, G., et al., 2012, A survey of photocatalytic materials for environmental remediation. J Hazard Mater, 211-12: 3-9. https://doi.org/10.1016/j.jhazmat.2011.11.050
-
Pastrana-Martinez, L. M., Morales-Torres, S., Likodimos, V., et al., 2012. Advanced nanostructured photocatalysts based on reduced grapheme oxide-
$TiO_{2}$ mixtures for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Catal B, 123-24: 241-256. https://doi.org/10.1016/j.apcatb.2012.04.045 -
Paz, Y., 2010, Application of
$TiO_{2}$ photocatalysis for air treatment: patents' overview. Appl Catal B, 99: 448-460. https://doi.org/10.1016/j.apcatb.2010.05.011 -
Pengyi, Z., Fuyan, L., Gang, Y., et al., 2003, A comparative study on decomposition of gaseous toluene by O3/UV,
$TiO_{2}$ /UV and O3/$TiO_{2}$ /UV. J Photochem Photobiol A, 156: 189-194. https://doi.org/10.1016/S1010-6030(02)00432-X - Sakthive, S., Kisch, H., 2003, Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed, 42: 4908-4911. https://doi.org/10.1002/anie.200351577
- Schlink, U., Thiem, A., Kohajda, T., et al., 2010, Quantile regression of indoor air concentrations of volatile organic compounds (VOC). Sci Total Environ, 408: 3840-3851. https://doi.org/10.1016/j.scitotenv.2009.12.002
- Shan, A. Y., Ghazi, T. I. M., Rashid, S. A., 2010, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A, 389: 1-. https://doi.org/10.1016/j.apcata.2010.08.053
- Stankovich, S., Dikin, D. A., Dormmett, G. H. B., et al., 2006, Graphene-based composite materials. Nature, 442: 282-286. https://doi.org/10.1038/nature04969
- USEPA(United States Environmental Protection Agency), 2008, Care for your air: a guide to indoor air quality. EPA 402/F-08/008. Washington DC, USA.
- Zhang, H., Lv, X., Li, Y., et al., 2010, P25-graphene mixtures as a high performance photocatalyst. ACS Nano, 4: 380-386. https://doi.org/10.1021/nn901221k